INTESTINAL EFFECTS OF SODIUM FLUORIDE
IN SWISS ALBINO MICE

H Sondhi, M L Gupta and G L Gupta
Bikaner, India

SUMMARY: Adult Swiss Albino mice (6-7 weeks old) were treated with sodium fluoride (NaF) until autopsy. The organo-somatic index, histology and biochemistry of the intestines were observed at commencement of treatment and on the 7th, 15th and 30th day. The crypt cells exhibited cytoplasmic degranulation and vacuolation. Hydropic degeneration in lamina propria and muscular tissue, increase in the number of goblet cells, broken tips of villi, nuclear pyknosis, and abnormal mitoses were observed. The organo-somatic index decreased significantly on days 7 and 15. Total protein and cholesterol values declined significantly, whereas those of glycogen and acid, and alkaline phosphatase activities, increased significantly on day 7 and to day 30. The results provide evidence of intestinal involvement in fluorosis.

Key words: Intestinal effects; Sodium fluoride; Swiss albino mice.

Introduction
Fluoride in drinking water is easily absorbed by the intestines and is quickly distributed throughout the body. Fluoride easily crosses membranes and enters tissues, thus affecting every phase of metabolism. Bones and teeth especially are the sink for fluoride, which accumulates in them and causes fluorosis. Only limited work has been done, however, on the toxicity of fluoride on soft tissues, viz liver, kidney, muscles, and testes. The aim of the present study, therefore, was to examine the effects of NaF in the intestines of Swiss albino mice.

Material and Methods
Twenty adult healthy Swiss albino mice (6-7 weeks old) were selected from our mice colony and treated as follows. The animals were fed mice feed and given sodium fluoride in water (100 ppm ad libitum until autopsy). Five mice were sacrificed by cervical dislocation on days 0, 7, 15, 30 from commencement of treatment. Three parameters were studied:

1. Organo-somatic index = \(\frac{\text{weight of the organ}}{\text{total body weight}} \times 100 \)

2. Histological study: a piece of intestine was fixed in Bouin's fluid. After routine procedure 5-micron sections were cut and stained with haematoxylin and eosin.

3. Biochemical studies: the parameters estimated were total proteins, glycogen, cholesterol, and acid and alkaline phosphatase activities.

Results and Discussion
The values of the organo-somatic index decreased significantly on day 7, continuing to day 15. The value increased by day 30, but it was still significantly lower than the 0-day value (Table 1). This decrease may be attributed to weight loss, degeneration of organs, and decreased protein levels. The functional sterility, with alterations in the structure, function, and metabolism of soft tissues in mice, rats, and rabbits administered different doses of fluoride has been observed.
TABLE 1. Changes in the values (mean ± S.E.) of organo-somatic index (gm/100 gm of body weight) of intestine on Swiss albino mice after NaF treatment

<table>
<thead>
<tr>
<th></th>
<th>0 day</th>
<th>7 days</th>
<th>15 days</th>
<th>30 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.36 ± 0.060</td>
<td>7.05 ± 0.056</td>
<td>6.83 ± 0.048</td>
<td>7.77 ± 0.042</td>
</tr>
<tr>
<td></td>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
</tr>
</tbody>
</table>

Histopathological changes observed in intestine included increased numbers of goblet cells in the villi and in the crypts, loosened muscular part, cytoplasmic degranulation and vacuolation, nuclear pyknosis, and abnormal mitoses. Lymphocytic infiltration was widespread in sub-mucosa and lamina propria. The lesions were observed by day 7 and continued up to day 30, being severe by day 15 (see Figures 1-4 below, photomicrographs of intestines).

1. 0-Day. Almost normal structure. x 640

2. 7-day. Increased goblet cells, loosened muscular part, cytoplasmic changes. x 640

3. 15-day. Broken villi tips (arrow), cell debris in lumen. x 320

4. 30-day. Lymphocytic infiltration, cytoplasmic changes, nuclear pyknosis, abnormal mitoses. x 640
Biochemically significant decreases were noted in the values of total proteins, cholesterol from day 7 up to day 30, and increases in glycogen and acid and alkaline phosphatase activities from day 7 to day 30. Their values were significantly higher than the 0-day values (Table 2).

TABLE 2. Changes in the values (mean ± S.E.) of biochemical parameters in intestine of Swiss albino mice after sodium fluoride treatment.

<table>
<thead>
<tr>
<th>Biochemical parameters</th>
<th>0-day</th>
<th>7 days</th>
<th>15 days</th>
<th>30 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total proteins (mg/gm tissue weight)</td>
<td>95.32 ± 1.23</td>
<td>91.23 ± 1.26</td>
<td>84.20 ± 1.85</td>
<td>79.45 ± 2.23</td>
</tr>
<tr>
<td>P<0.05</td>
<td>P<0.01</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td></td>
</tr>
<tr>
<td>Glycogen (mg/gm tissue weight)</td>
<td>0.96 ± 0.011</td>
<td>1.16 ± 0.010</td>
<td>1.54 ± 0.012</td>
<td>1.83 ± 0.12</td>
</tr>
<tr>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td></td>
</tr>
<tr>
<td>Cholesterol (mg/gm tissue weight)</td>
<td>3.13 ± 0.012</td>
<td>2.47 ± 0.011</td>
<td>2.23 ± 0.016</td>
<td>2.11 ± 0.015</td>
</tr>
<tr>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td></td>
</tr>
<tr>
<td>Acid Phosphatase Activity (mg pi/gm/hr)</td>
<td>1.86 ± 0.032</td>
<td>2.36 ± 0.045</td>
<td>2.85 ± 0.036</td>
<td>3.13 ± 0.052</td>
</tr>
<tr>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td></td>
</tr>
<tr>
<td>Alkaline Phosphatase Activity (mg pi/gm/hr)</td>
<td>22.36 ± 0.21</td>
<td>26.54 ± 0.23</td>
<td>30.36 ± 0.34</td>
<td>32.67 ± 0.27</td>
</tr>
<tr>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td>P<0.001</td>
<td></td>
</tr>
</tbody>
</table>

Decreased total serum proteins in rabbits ingesting fluoride has been reported.14 Protein metabolism has also been shown to be affected by fluoride.15-17

After NaF treatment, an increase in glycogen values of muscle and liver has been observed.18 This may be attributed to reduced utilization of glycogen due to alteration in the activity of some key enzymes of carbohydrate metabolism.19,20 The *in vitro and in vivo* oxidation of fatty acids has been reported to be inhibited by fluorides.21 The increase in acid and alkaline phosphatase activities following NaF treatment may be due to disruption of lysosomes. Elevated plasma alkaline phosphatase and calcium levels have been found in endemic fluorosis areas.22,23 Gastro-intestinal manifestations are major features of intolerance to fluorides.24

Acknowledgement

The authors are grateful to the Head, Zoology Department, and to the Principal, Dungar College, Bikaner, India, for their constant encouragement and for providing facilities.

References

15 Pandit CG, Naranyana, Rao D. Endemic fluorosis in South India Experimental production of Chronic fluorine intoxication in monkeys. *Indian Journal of Medical Research* 28 559-574 1940.

Published by the International Society for Fluoride Research
Editorial Office: 216 Atkinson Road, Titirangi, Auckland 7, New Zealand