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A B S T R A C T   

Background: Excessive fluoride exposure has been associated with intelligence loss, but little is known about 
gene-fluoride interactions on intelligence at SNP-set, gene and pathway level. 
Objectives: Here we conducted a population-based study in Chinese school-aged children to estimate the asso
ciations of fluoride from internal and external exposures with intelligence as well as to explore the gene-fluoride 
interactions on intelligence at SNP-set, gene and neurodevelopmental pathway level. 
Methods: A total of 952 resident children aged 7 to 13 were included in the current study. The fluoride contents in 
drinking water, urine, hair and nail were measured using the ion-selective electrode method. LASSO Binomial 
regression was conducted to screen the intelligence-related SNP-set. The gene-fluoride interactions at gene and 
pathway levels were detected by the Adaptive Rank Truncated Product method. 
Results: The probability of high intelligence was inversely correlated with fluoride contents in water, urine, hair 
and nail (all P < 0.001). The SNP-set based on rs3788319, rs1879417, rs57377675, rs11556505 and rs7187776 
was related to high intelligence (P = 0.001) alone and by interaction with water, urinary and hair fluoride (P =
0.030, 0.040, 0.010), separately. In gene level, CLU and TOMM40 interacted with hair fluoride (both P = 0.017) 
on intelligence. In pathway level, Alzheimer disease pathway, metabolic pathway, signal transduction pathway, 
sphingolipid signaling pathway and PI3K-AKT signaling pathway interacted with fluoride on intelligence in men. 
Conclusions: Our study suggests that fluoride is inversely associated with intelligence. Moreover, the interactions 
of fluoride with mitochondrial function-related SNP-set, genes and pathways may also be involved in high in
telligence loss.   

1. Introduction 

Fluoride distributes in nature widely. Although it is beneficial for 
dental caries prevention, prolonged exposure to excessive fluoride re
sults in adverse effects, such as skeletal, dental and neurological fluo
rosis. More than 200 million people consume fluoride-enriched drinking 

water worldwide (Su et al., 2020), and the number exceeds 87 million in 
China (Lei et al., 2014). Fluoride has been classified as one of the top ten 
chemicals of major public health concern (Mumtaz et al., 2015). It is 
becoming increasingly evident that numerous factors are associated 
with intelligence. Pesticides, cadmium, arsenic, lead and mercury are 
acknowledged as environmental risk factors of intelligence loss (Saeed 
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et al., 2020). Besides, the overall nutritional status and the intake of 
essential nutrients also have potential impacts on intelligence, especially 
micronutrients including vitamins and minerals, which play important 
roles in environmental toxicants absorption, distribution and meta
bolism (Guth et al., 2020). Furthermore, the impaired intelligence 
caused by some brain diseases, for example, Down’s syndrome and ce
rebral trauma, could not be ignored. Recently, fluoride-related neuro
toxicity has aroused extensive attention. Animal studies suggested that 
high fluoride exposure was associated with learning and memory 
impairment as well as structural and functional damage of the brain in 
rats (Zhu et al., 2017). Consistently, a great deal of epidemiological 
evidence revealed positive association between excessive fluoride 
exposure and poor performance of children’s neurodevelopment, such 
as lower intelligence, and deficits in memory and cognition (Green et al., 
2019). In our previous study, excessive exposure to fluoride was found 
to be associated with loss of excellent intelligence in children, even at 
low levels (Yu et al., 2018). 

Fluoride-induced neurotoxicity involves a series of physiological 
processes at the cellular and molecular levels. Excessive fluoride expo
sure can change the expression of energy metabolism-related proteins, 
and prevent the oxidative phosphorylation process by interfering with 
the activity of metabolic enzymes, therefore inhibiting the use of glucose 
in brain tissue and affecting normal neuron activity (Chen et al., 2015; 
Lima Leite et al., 2014). Animal studies suggested that the abnormalities 
of neurotransmitters and their receptors induced by fluoride resulted in 
impaired learning and memory ability (Pereira et al., 2011; Shan et al., 
2004). Besides, fluoride could affect the fluidity and function of synaptic 
membranes by down-regulating PSD-95 and up-regulating VAMP-2, 
therefore resulting in cognitive impairment (Liang et al., 2020; Zhu 
et al., 2011). 

Mitochondria is the energy center and essential for many biological 
processes in neurodevelopment, such as neurogenesis, synaptic forma
tion, neurotransmitter transmission, metabolic activity and enzyme 
catalysis (Devine and Kittler, 2018). Growing evidence has suggested 
that fluoride could result in mitochondrial dysfunction in neurons both 
in vivo and in vitro (Araujo et al., 2019; Zhao et al., 2019). Fluoride could 
cause the abnormality of mitochondrial morphology and intervene the 
electron transport in the mitochondrial respiratory chain, consequently 
resulting in dysfunction of energy generation and utilization. Mean
while, the excessive reactive oxygen and increased oxidative stress 
induced by energy metabolism dysfunction could cause lipid peroxida
tion of mitochondrial membrane and DNA damage in return (Song et al., 
2017; Zhao et al., 2019). In these processes, mitochondrial function- 
related genes may play important roles, including MFN1, MFN2, FIS1, 
DRP1 and OPA1 (Chen et al., 2019; Yu et al., 2019) by intervening 
fusion, split, autophagy and other mitochondrial dynamic activities. 
However, whether these genes are involved in the fluoride-induced 
neurotoxicity in children has barely been investigated. Though indi
vidual SNPs of two mitochondrial function-related genes COMT and 
DRD2 may contribute to modifying the relationship of high fluoride 
exposure with children’s intelligence (Cui et al., 2018; Zhang et al., 
2015), the combined effects of multiple SNPs or genes have rarely been 
explored yet. 

In the present study, we detected the associations of fluoride from 
internal and external exposures with intelligence. Besides, the combined 
effects of genetic variants involved in both neurodevelopment and 
mitochondrial biological processes on intelligence were explored at 
SNP-set level, gene level and neurodevelopmental pathway level, and 
then the interactions of these variants with fluoride exposure were 
further detected in the current study with Chinese school-aged children. 

2. Materials and methods 

2.1. Study design and population 

The current study was conducted in 2015 in the rural areas of Baodi 

District (117◦30′N, 39◦72′E), Tianjin, China. As the water fluoride 
concentrations in rural villages kept stable over the past decade ac
cording to the annual surveillance data from the local Center for Disease 
Control and Prevention (CDC), the study areas were divided into his
torical high fluoride areas and normal fluoride areas. None of the study 
sites was exposed to excessive neurotoxins including lead, arsenic and 
mercury, or in the endemic areas of iodine deficiency based on the 
surveillance data from the local CDC (Yu et al., 2018). The biological 
samples were collected from about one-third of the total participants, 
using a case-control design based on a cross-sectional study. The details 
of participant recruitment are displayed in Fig. 1. The stratified and 
multi-stage random sampling method was used to select children aged 
7–13 years who were permanent residents since birth from each area 
(Fig. 1). All the participants and their parents/guardians provided 
written informed consent before study enrollment, as the subjects were 
minors. This work was approval for research ethics from the Review 
Board of Tongji Medical College, Huazhong University of Science and 
Technology. 

2.2. General data collection 

Trained investigators conducted face-to-face interviews with the 
recruited children and their parents to collect demographic data, 
including age, sex, maternal and paternal education level, family in
comes, maternal exposures (smoking, drinking, passive smoking and 
anemia) during pregnancy, maternal delivery conditions (hypoxia, 
dystocia, premature birth and post-term birth) and history of cerebral 
trauma. Height (1 mm precision) was measured using a standard cali
brated scale. Weight (0.1 kg precision) was measured without heavy 
clothing and shoes. All the measurements were conducted based on the 
recommended standard methods (Ward et al., 2017) by nurses. The 
development statuses of the recruited children were further evaluated 
by the calculation of body mass index (BMI), derived from height and 
weight. 

2.3. Sample collection 

Water samples were collected from each public supply in the villages. 
A spot (early-morning) urine sample from each subject was also 
collected. Both water and urine samples were collected into sterilized, 
labeled polythene tubes (50 mL) and transported to the laboratory 
within two hours in iceboxes, then stored at − 80 ◦C until analysis. A 
total of 96 drinking water samples and 1020 urine samples were 
collected. 

Hair samples were collected from the occipital zone of the scalp using 
stainless steel scissors. Children who had their hair permed or dyed, or 
with hair samples less than 0.2 g (n = 250) were excluded from the 
corresponding analyses due to the potential contamination or lowest 
need for testing. Nail (fingernail/toenail) samples were collected with 
standard nail clippers. Children with dyed nails or with nails samples 
less than 0.2 g (n = 340) were excluded from the corresponding ana
lyses. Both hair and nail samples were put into sterilized, labeled 
transparent plastic bags with zip-locks that can be sealed to prevent 
pollution, transported to the laboratory, and stored at 4 ◦C until analysis. 
A total of 770 hair samples and 680 nail samples were collected. 

About 5 mL fasting peripheral blood sample was drawn from each 
subject into a polypropylene Na-EDTA tube. Lymphocytes were sepa
rated within 2–4 h after sample collection by centrifugation at 3000 r/ 
min for 15 min, then transferred to 1.5 mL EP tubes and stored at − 80 ◦C 
for subsequent analysis. A total of 1020 blood samples were collected. 

2.4. Measurement of fluoride concentration 

The hair sample was immersed in 75% ethanol solution for 0.5 h, 
stirred for 10–15 min twice, washed three times with deionized water, 
then placed in the oven for 5 h at 80 ◦C. After drying, the hair sample 
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was cut into small sections of 0.5 cm. About 0.2–0.5 g samples were 
accurately weighed into a 10 mL tube, immersed in 10.0 mL of 2 mol/ L 
NaOH solution, and heated 2 h in a water bath at 85 ◦C, until the hair 
sample dissolved. After cooling, the sample solutions were filtered and 
adjusted to weak acidity (pH 5.0–5.5) with a dilute HCl solution, then 
the volume was set to 15 mL with deionized water, and 25 mL of total 
ionic strength adjusted buffered (TISAB) was subsequently added for 
measurement. 

The nail specimen was cleaned with alcohol swab firstly, then placed 
into a 15 mL polypropylene plastic tube, and washed twice with 1% 
Triton X100 under ultrasound. After rinsing with deionized water and 
ethanol, the samples were placed in the oven at 50 ◦C overnight. After 
drying, about 0.2 g nail samples were weighted into the tube, and 1.0 mL 
mixed solution of 70% concentrated nitric acid (Sinopharm Chemical 

Reagent Co., Ltd., Shanghai, China) and 30% hydrogen peroxide 
(Guanghua Sci-Tech Co., Ltd., Guangdong, China) (volume ration 1:1) 
were added, then heated 2 h in a water bath at 80 ◦C, until the nail 
samples dissolved. After cooling, the sample solutions were filtered and 
adjusted to weak acidity (pH 5.0–5.5) with a dilute NaOH solution, then 
the volume was set to 15 mL with deionized water, and 25 mL TISAB 
solution was added further for measurement. Different from pretreat
ment of hair and nail samples, the drinking water and urine samples 
were directly diluted with an equal volume of TISAB of pH 5–5.5 for 
optimal analysis of fluoride ion. 

The concentration detection of F− [mg/L] was conducted by the 
national standardized ion-selective electrode method in China (Wu 
et al., 2015). For the F− selected electrode (PF-202-CF, INESA, 
Shanghai), the detection limit was 0.01 mg/L. The measurement 

Fig. 1. Flow chart of recruitment process.  
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accuracy was between 97.3% and 101.9%, and the measurement error 
was less than ±5%. All the chemicals used were guaranteed reagents. 

2.5. Assessment of intelligence quotient (IQ) 

IQ scores were measured by the second edition of Combined Raven’s 
Test – The Rural in China (CRT-RC2) (Liu et al., 2009) for children aged 
7 to 13 years. The CRT-RC2 comprises 72 nonverbal items in six sets, 
including A, AB and B sets (the Raven’s colored progressive matrix), and 
C, D and E sets (the Raven’s standard progressive matrix). Each set 
stands for different domains: A for perceptual awareness, B for 
comparative ability of similarity, C for reasoning by analogy, D for serial 
reasoning ability, E for abstract reasoning, while AB is a comprehensive 
set suitable for children and retarded intelligence population (Xu et al., 
2014). The CRT-RC2 scale is an effective test for basic cognition, which 
is less affected by the difference in language, culture and ethnicity. 

The CRT-RC2 was completed by each child based on the instruction 
manual within 40 min. In each test, 40 children were randomly assigned 
to a classroom to finish the test independently, under four professionals’ 
supervision. The children’s IQ scores were categorized into seven de
grees as follow: ≥130 (excellent), 120–129 (superior), 110–119 (high 
normal), 90–109 (normal), 80–89 (dull normal), 70–79 (marginal), and 
≤69 (retarded) according to the norm of rural children in China (Ding 
et al., 2011; Wang et al., 2007). 

2.6. SNP selection, and DNA isolation and genotyping 

Literature review and bioinformatic analysis were conducted to 
select genes related to mitochondrial function and involved in nervous 
system development. Bioinformatic tools were utilized to screen po
tential functional tag-SNPs of the selected genes in the Chinese popu
lation. The specific steps were as follow: (1) 547 functional genes related 
to human intelligence and cognition (intelligence, intellectual disabil
ities, cognition, cognition disorder, learning disorders, and neuro
developmental related diseases such as Autistic disorder and 
schizophrenia) were initially selected by literature review based on 
Genome-wide Association Studies (GWAS), large-scale studies and meta- 
analysis. (2) Based on gene ontology (GO) analysis results, 60 genes 
involved in both nervous system development and mitochondrial bio
logical process were further selected. (3) The genes and SNPs data of the 
Chinese Han Beijing (CHB) population were downloaded from the 1000 
Genomes Project website (http://phase3browser.1000genomes.org/in 
dex.html), and then imported into Haploview software version 4.2 
(Broad Institute of MIT and Harvard, Cambridge, MA, USA). A total of 
279 tag-SNPs were kept with a minor allele frequency (MAF) ≥ 0.05 in 
the CHB population. (4) Functional effects prediction (transcription 
factor binding site, splicing, miRNA, nonsynonymous SNP, stop codon, 
etc.) was conducted by SNPinfo Web Server online software (https://snp 
info.niehs.nih.gov/snpinfo/snpfunc.html). The predicted non- 
functional tag-SNPs were replaced with their pairwise linkage disequi
librium sites (set as r2 ≥ 0.8). A total of 110 functional tag-SNPs were 
further selected. (5) Considering the MAF of SNPs locus, Hardy- 
Weinberg Equilibrium (HWE), published researches, and the predicted 
success rate of locus typing, 60 functional tag-SNPs from 19 candidate 
genes were finally identified for subsequent analysis (Table S1). 

DNA was isolated from lymphocytes using a commercial DNA 
extraction Kit (Generay Biotech Co., Ltd., Shanghai, China) according to 
the manufacturer’s instructions, and quality assessment was performed 
with Nanodrop ND1000 (Thermo scientific, Wilmington, DE, USA). DNA 
was diluted to a final concentration of 200 ng/μL. Primers were designed 
using Primer 3 online version 0.4.0 (http://frodo.wi.mit.edu/), then 
synthesized in the Shanghai Genomics Institute (Bioligo Co., LTD, 
Shanghai, China). The details of the primers are given in Table S2. An 
efficient multiple gene region enrichment/ next generation sequencing- 
based SNPseq assay was designed for SNP genotyping (Novogene Co., 
Ltd., Beijing, China). The SNPs were genotyped by a three-round 

multiplex PCR and next generation sequencing method (Xiong et al., 
2016). The amplification procedures and reaction conditions for PCR are 
shown in Table S3. 

Among the 60 SNPs included, 1 (rs4680) fell through the assay 
design, 2 (rs17554825 and rs9658258) were excluded as the genotyping 
call rate below 92%, and 4 (rs12098908, rs7928, rs1800844 and rs6356) 
did not meet Hardy-Weinberg equilibrium (P < 0.05). Sixty-eight sam
ples were excluded as the individual call rate less than 95%. Finally, 53 
SNPs from 17 genes were available for the 952 subjects. Additionally, 
5% of the samples were randomly selected as validation duplicates to be 
re-genotyped, and the concordance rate was 100%. 

2.7. Statistical analysis 

The whole population was firstly divided into high (IQ ≥ 120) and 
non-high intelligence group (70 ≤ IQ < 120). Data were presented as 
mean (with standard deviation) or median (P25-P75) for continuous 
variables, and number (percentage/proportion) for categorical vari
ables. The baseline characteristics and fluoride exposure levels were 
compared by a student’s t-test or Wilcoxon test for continuous variables, 
whereas a Chi-square test was used for the comparisons of the discrete 
data between the two groups. We calculated correlation coefficients 
among the four fluoride exposure indexes (water, urinary, hair and nail 
fluoride) by Spearman’s rank correlation analysis. Multivariable piece
wise linear regression and logistic regression were utilized to examine 
the effects of fluoride exposure on IQ scores and the prevalence of high 
intelligence. In the piecewise linear regression model, the turning point 
was chosen according to the maximum likelihood model using the trial- 
and-error method, along with a log likelihood ratio test to examine the 
statistical significance (Yu et al., 2013). Linear trends across increasing 
tertiles of fluoride exposures on high intelligence were performed by 
treating fluoride indicators as ordinal variables. The selection of cova
riates was based on the characteristics of the study population and 
previous literatures. 

The genotype distribution of SNPs between high and non-high in
telligence group was compared by Chi-square test, and the Cochran- 
Armitage trend test was further conducted with the wild homozygous 
genotype as reference group. To develop the high intelligence-related 
SNP-set, Least Absolute Shrinkage and Selection Operator (LASSO) 
binomial regression was applied to identify the most correlated SNPs, 
with the genotype coded as 0, 1, and 2 for protective homozygote, 
heterozygote and risk homozygote, respectively. Multivariate logistic 
regression was further conducted to evaluate the associations of the 
SNPs selected by LASSO regression with intelligence by calculating the 
odds ratios (ORs) and 95% confidence intervals (95% CIs). The SNPs 
selected were weighted by the corresponding regression coefficients and 
then summed to constitute the SNP-set score. In addition, the association 
between SNP-set and high intelligence was assessed by calculating the 
ORs for SNP-set score quartiles with the highest quartile as reference, 
and the trend test was performed with the quartiles of SNP-set score as 
an ordinal variable. We also tested the gene-environment interactions 
between SNP-set and fluoride exposures on high intelligence by calcu
lating the association between fluoride exposures and the probability of 
high intelligence stratified by the median of SNP-set score. Furthermore, 
to quantify the interaction effects, we included interaction terms in the 
multivariate logistic regression model, in which the SNP-set score and 
four fluoride indexes were set as binary variables according to the cor
responding median levels or permissible limits (only for water fluoride). 

We also investigated the associations of intelligence with genetic 
variations at the gene or pathway level, using the Adaptive Rank 
Truncated Product (ARTP) method that combines association signals 
from the SNPs in a given gene or from the genes in a special pathway to 
provide a P value at the gene or pathway level, respectively (Broc et al., 
2018). The ARTP method was further utilized to detect the interactions 
between genetic variations at the gene or pathway level and fluoride 
exposures, stratified by sex. The relationships among SNPs, genes and 
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pathways are shown in Table S4. All P values of the associations or in
teractions with fluoride exposures at gene or pathway level were cor
rected for multiple testing by false discovery rate method (FDR) (Huang 
et al., 2018), and adjusted for age, sex, maternal and paternal education. 

Epidata (version 3.0, Epidata Association, Odense, Denmark) was 
used for database construction. Statistical analyses were performed with 
SAS software package (version 9.4, SAS Institute Inc., Cary, NC, USA), 
and Empower (R) (www.empowerstats.com, X&Y solutions, inc. Boston 
MA) and R (version 3.5.3, http://www.R-project.org). The LASSO 
Binomial regression and ARTP method were performed using R package 
glmnet (version 2.0–18) and PIGE (version 1.1), respectively. All P 
values were two-sided with a significance level of less than 0.05. 

3. Results 

3.1. Characteristics of the participants 

Out of 1020 participants, 68 individuals were excluded due to lower 
genotyping detection rate (<95%), leaving 952 subjects available for 
subsequent analysis. Based on the intelligence level, the subjects were 
divided into the high intelligence group (IQ ≥ 120) and the non-high 
intelligence group (70 ≤ IQ < 120). The mean IQ level in the non- 
high intelligence group was lower compared to the high intelligence 
group (105.47 ± 9.57 vs 126.34 ± 5.60). Except for maternal and 
paternal education levels, the distributions of age, sex, body mass index, 
family incomes, history of cerebral trauma, maternal exposures (smok
ing, drinking, passive smoking and anemia) during pregnancy, and de
livery condition (hypoxia, dystocia, premature birth and post-term 
birth) were comparable between the two groups (Table 1). Besides, the 
comparisons of the characteristics between the included and excluded 
participants from the 3020 eligible children were conducted. Most 
characteristics were comparable between the included and excluded 
children, including age, sex, body mass index, intelligence quotient 
scores, family incomes, maternal and paternal education, maternal ex
posures during pregnancy, delivery conditions, history of cerebral 
trauma and water fluoride exposure (Table S5). 

The mean levels of fluoride concentrations in drinking water, urine, 
hair and nail in the high intelligence group were 0.70 mg/L, 0.33 mg/L, 
8.26 μg/g and 11.71 μg/g, respectively, compared with 1.00 mg/L, 0.60 
mg/L, 14.39 μg/g and 19.76 μg/g in the non-high intelligence group 
(Table 1). As shown in Fig. 2, the hair fluoride and nail fluoride were 
positively correlated, with a spearman’s correlation coefficient (rs) of 
0.77, and they both were correlated with urinary fluoride (rs = 0.52, 
0.33, respectively). Hair fluoride, nail fluoride and urinary fluoride were 
all positively related to water fluoride (rs = 0.45, 0.33, 0.71, respec
tively) (all P < 0.001). 

3.2. Association between fluoride exposure and intelligence 

Higher fluoride concentrations in drinking water, urine, hair and nail 
were associated with lower possibility of high intelligence (all Ptrend <

0.001 across tertiles) (Table 2). Specifically, the adjusted ORs were 0.39 
(95% CI: 0.25, 0.61) for children exposed to >1.40 mg/L water fluoride 
compared to those exposed to ≤0.60 mg/L water fluoride, and 0.41 
(95% CI: 0.26, 0.66) for children exposed to >1.80 mg/L urinary fluo
ride compared to those exposed to ≤0.22 mg/L urinary fluoride. For hair 
fluoride, the adjusted ORs were 0.16 (95% CI: 0.09, 0.29) and 0.08 (95% 
CI: 0.04, 0.16) when exposed to 10.41–17.02 μg/g and >17.02 μg/g, 
respectively, compared with ≤10.40 μg/g. Similarly, the adjusted ORs 
were 0.15 (95% CI: 0.08, 0.29) and 0.09 (95% CI: 0.04, 0.19) when 
exposed to 14.65–23.41 μg/g and >23.41 μg/g nail fluoride, respec
tively, compared with ≤14.64 μg/g (tertile 1). 

The dose-response relationships between fluoride exposures and in
telligence were non-linear (Fig. 3). Piecewise linear results showed that 
IQ decreased by 4.21 for every 0.50 mg/L increase in water fluoride 
when exceeding 3.40 mg/L. IQ decreased by 5.23 for every 0.50 mg/L 

increase in urinary fluoride from 1.60 mg/L, and reached stabilized up 
to 2.50 mg/L. For every 1.00 µg/g increase in hair and nail fluoride, IQ 
decreased by 2.34 and 1.10, and tended to be stable at 10.50 µg/g and 
14.50 µg/g, respectively (Fig. 3, Table S6). 

3.3. Association of SNP-set - fluoride interaction with high intelligence 

Out of 53 SNPs, rs3788319, rs1879417, rs57377675, rs11556505 
and rs7187776 were associated with intelligence (Table S7), and were 
main contributors to the SNP-set (Fig. 4, Table 3). The performance was 
not improved significantly when there were more than five SNPs 
included in the model. The SNP-set score was inversely associated with 
high intelligence, with a P-trend of 0.001 (Table S8). Stratification 
analysis based on the median of SNP-set score showed different effects of 

Table 1 
The characteristics of participants by intelligence levels.  

Variables Intelligence Pd  

High (IQ ≥ 120) Non-high (70 ≤ IQ 
<120)  

Participants, No. 173 779  
Agea (years) 9.8 ± 1.1 9.9 ± 1.1 0.707 
Sexb   0.663 

Male 83 (48.0%) 388 (49.8%)  
Female 90 (52.0%) 391 (50.2%)  

Height (cm)a 142.5 ± 8.9 142.5 ± 8.9 0.976 
Weight (kg)a 35.4 ± 9.6 36.7 ± 10.6 0.143 
Body mass index (kg/m2)a 17.73 ± 3.46 17.71 ± 3.64 0.496 
Intelligence quotient scorea 126.34 ± 5.60 105.47 ± 9.57 <0.001 
Family income (RMB/year)b   0.538 
<10,000 9 (5.2%) 58 (7.5%)  
10,000–30,000 78 (45.1%) 355 (45.5%)  
>30,000 86 (49.7%) 366 (47.0%)  

Maternal educationb   0.053 
Middle school or lower 19 (11.0%) 132 (16.9%)  
High school 126 (72.8%) 541 (69.5%)  
Junior college or above 28 (16.2%) 106 (13.6%)  

Paternal educationb   0.046 
Middle school or lower 9 (5.2%) 90 (11.5%)  
High school 135 (78.0%) 570 (73.2%)  
Junior college or above 29 (16.8%) 119 (15.3%)  

Maternal exposure during 
pregnancyb    

Smoking 1 (0.6%) 5 (0.6%) 0.999 
Drinking 0 (0.0%) 3 (0.4%) / 
Passive smoking 14 (8.1%) 67 (8.6%) 0.828 
Anemia 4 (2.4%) 29 (3.8%) 0.375 

Delivery conditionsb    

Hypoxia 5 (2.9%) 14 (1.8%) 0.352 
Dystocia 6 (3.5%) 21 (2.7%) 0.580 
Premature birth 5 (2.9%) 25 (3.2%) 0.828 
Post-term birth 3 (1.7%) 33 (4.2%) 0.119 

History of cerebral traumab 1 (0.6%) 4 (0.5%) 0.999 
Water fluoride (mg/L)c 0.70 

(0.40–1.00) 
1.00 (0.50–1.90) <0.001 

Urinary fluoride (mg/L)c 0.33 
(0.13–0.81) 

0.60 (0.16–2.22) <0.001 

Hair fluoride (μg/g)c 8.26 
(5.72–10.48) 

14.39 (10.25–20.56) <0.001 

Nail fluoride (μg/g)c 11.71 
(8.53–14.64) 

19.76 (14.16–27.32) <0.001 

Abbreviation: IQ, intelligence quotient, RMB, renminbi, the official currency of 
the People’s Republic of China, and its basic unit is yuan. 

a Data were presented as mean ± SD for continuous variables.  

b Number (percentage/proportion) for categorical variables.  

c Data were presented as median (P25-P75) for continuous variables.  

d Student’s t-test or Wilcoxon test was applied to compare the difference of 
continuous variables, and Chi-square test or Fisher exact test was used to 
compare the difference of categorical variables.  
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fluoride exposures on high intelligence (Fig. 5). Based on the above 
findings, the participants were further dichotomized based on the me
dian levels or permissible limits of fluoride exposures. As shown in 
Table S9, in the high score group, the possibility of developing high 
intelligence for children exposed to higher water fluoride (>1.00 mg/L), 

urine fluoride (>1.60 mg/L), hair fluoride (>14.00 μg/g) and nail 
fluoride (>19.60 μg/g) decreased by 67% (OR = 0.33, 95% CI: 0.20, 
0.55), 63% (OR = 0.37, 95% CI: 0.22, 0.62), 83% (OR = 0.17, 95% CI: 
0.08, 0.34) and 87% (OR = 0.13, 95% CI: 0.06, 0.31), respectively, 
compared to those exposed to lower levels of fluoride. Correspondingly, 
in the low score group, the adjusted ORs for higher exposures of fluoride 
in drinking water, urine, hair and nail were 0.27 (95% CI: 0.14, 0.54), 
0.32 (95% CI: 0.16, 0.63), 0.12 (95% CI: 0.04, 0.35) and 0.12 (95% CI: 
0.04, 0.37), respectively. Specially, SNP-sets were interacted with water 
fluoride (P = 0.03), urinary fluoride (P = 0.04) and hair fluoride (P =
0.01) on intelligence, respectively. 

Further analyses indicated that the components of the SNP-set 
generally increased the probability of normal intelligence (90 ≤ IQ <
120) and low intelligence (70 ≤ IQ < 90) when taking the high intel
ligence (IQ ≥ 120) as control group. The wide range of 95% CIs indi
cated insufficient statistical power in low intelligence group (Table S10). 
Heterogeneity across the groups was assessed by I2 statistic (ranging 
from 0 to 100%) with a small value indicating less heterogeneity. The 
heterogeneity was generally null or low in the between-group differ
ences, as I2 for heterogeneity between groups were 0%, 0%, 0%, 0% and 
30%, respectively. Hence, it might be suitable to dichotomize intelli
gence into high (IQ ≥ 120) and non-high (70 ≤ IQ < 120) groups for the 
main analysis. 

3.4. Association between gene/pathway- fluoride interaction and high 
intelligence 

As shown in Table 4, no single gene was associated with high intel
ligence after FDR correction. An interaction between CLU and hair 
fluoride was found in females (FDR corrected P = 0.017). Besides, 
TOMM40 was interacted with hair fluoride for the intelligence level 
(FDR correlated P = 0.051), especially in females (FDR correlated P =
0.017). In pathway level, Alzheimer disease pathway presented 

Fig. 2. Relationships among fluoride concentrations in different exposure indicators of (A) urinary fluoride and water fluoride (B) nail fluoride and water fluoride (C) 
hair fluoride and water fluoride (D) nail fluoride and urinary fluoride (E) hair fluoride and urinary fluoride (F) nail fluoride and hair fluoride. The adjusted factors 
were age, sex, maternal education and paternal education. The solid line and the dashed line represent the estimated values and their corresponding 95% confi
dence intervals. 

Table 2 
Relationships between fluoride exposure and high intelligence.  

Fluoride exposure Crude OR (95% 
CI) 

Adjusted OR (95% 
CI)a 

P- 
trendb 

Water fluoride (mg/L)   <0.001 
Tertile 1 (≤0.60) Reference Reference  
Tertile 2 (0.61–1.40) 0.95 (0.65, 1.38) 0.94 (0.64, 1.37)  
Tertile 3 (>1.40) 0.38 (0.24, 0.59) 0.39 (0.25, 0.61)  

Urinary fluoride (mg/L)   <0.001 
Tertile 1 (≤0.22) Reference Reference  
Tertile 2 (0.23–1.80) 1.26 (0.87, 1.83) 1.26 (0.87, 1.84)  
Tertile 3 (>1.80) 0.41 (0.26, 0.65) 0.41 (0.26, 0.66)  

Hair fluoride (μg/g)   <0.001 
Tertile 1 (≤10.40) Reference Reference  
Tertile 2 
(10.41–17.02) 

0.16 (0.10, 0.29) 0.16 (0.09, 0.29)  

Tertile 3 (>17.02) 0.08 (0.04, 0.16) 0.08 (0.04, 0.16)  
Nail fluoride (μg/g)   <0.001 

Tertile 1 (≤14.64) Reference Reference  
Tertile 2 
(14.65–23.41) 

0.15 (0.08, 0.29) 0.15 (0.08, 0.29)  

Tertile 3 (>23.41) 0.09 (0.04, 0.18) 0.09 (0.04, 0.19)  

Abbreviation: OR, odds ratio, the risk of intelligence loss; CI, confidence 
interval. 

a Adjustment: age, sex, maternal education and paternal education.  

b The P-value for trend with the fluoride contents as a categorical variable 
adjusted for covariates in footnote a.  

X. Yu et al.                                                                                                                                                                                                                                       



Environment International 155 (2021) 106681

7

interaction with water fluoride (FDR corrected P = 0.049) on intelli
gence in males. Besides, metabolic pathway, signal transduction 
pathway, sphingolipid signaling pathway and PI3K-AKT signaling 
pathway presented suggestive interactions with water fluoride and uri
nary fluoride on intelligence in males (all FDR correlated P = 0.074) 
(Table 5). 

4. Discussion 

In this population-based study, we explored gene-fluoride in
teractions on intelligence systematically and comprehensively. Fluoride 
concentrations in drinking water, urine, hair and nail were found 
inversely associated with intelligence scores and the probability of high 
intelligence. Furthermore, we found the interactions of fluoride with a 
SNP-set based on 5 SNPs (rs3788319, rs1879417, rs57377675, 
rs11556505 and rs7187776) involved in neurodevelopment and mito
chondrial biological process on intelligence levels. Besides, the current 
study also revealed interactions of fluoride with CLU and TOMM40 on 
intelligence in females, and that with Alzheimer disease pathway, 
metabolic pathway, signal transduction pathway, sphingolipid signaling 
pathway and PI3K-AKT signaling pathway in males. The interactions of 

fluoride with the SNP panel, genes and the neurodevelopmental 
pathway brought new sights to potential mechanisms of fluoride- 
induced neurotoxicity. 

Fluoride is able to cross the blood-brain barrier. Excessive accumu
lation of fluoride in the brain contributes to neurological damage. 
Population-based studies suggested adverse effects of high fluoride 
exposure on children’s neurodevelopment, including intelligence loss 
and cognitive decline (Till et al., 2020). Similarly, animal evidence 
indicated that excessive exposure to fluoride might induce deficits in 
attention, memory and cognition (Zhu et al., 2017). Although numerous 
studies have uncovered the harmful effects of fluoride on intelligence, 
the exposure estimation was mainly based on water or urine samples. As 
relatively long-term internal exposure indicators, fluoride contents in 
hair and nail are crucial to reflect the chronic exposure levels (Rango 
et al., 2017). In our study, hair and nail fluoride were both positively 
correlated with water and urinary fluoride. Besides, increased fluoride 
contents in hair and nail were both associated with reduced IQ scores in 
non-linear model and lower possibility of developing high intelligence, 
which were consistent with the findings from water and urinary fluo
ride. Based on multiple fluoride exposures, our study suggested the 
potential intellectual damage caused by excessive fluoride exposure. 

Fig. 3. Does-response relationships of the intelligence quotient scores with the fluoride in drinking water (A), urine (B), nail (C), and hair (D). The adjusted factors 
were age, sex, maternal education and paternal education. The solid line and the dashed line represent the estimated values and their corresponding 95% confi
dence intervals. 
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Genetic background has been reported to play important roles in 
fluoride-induced adverse health effects. Polymorphisms in COL1A2 and 
CTR were found to alter the risk of dental fluorosis (Huang et al., 2008; 
Jiang et al., 2015), and genetic variants in MMP-2 and VDR were 
significantly correlated with the severity of skeletal fluorosis (Pei et al., 
2017; Yang et al., 2016). However, these studies predominantly focused 
on dental and skeletal fluorosis, neurotoxicity related to fluorine was 
rarely studied. Besides, previous studies mainly focused on single SNP 
analysis. However, this approach is not powerful enough to illustrate the 
association of candidate genes with fluorosis, especially with intelli
gence, which is a polygenic complex trait. A panel of SNP (SNP-set) is an 
effective strategy to assess the combined effects of genetic poly
morphisms weakly associated with outcomes or may not be detected in 
single-SNP analyses, which has been widely applied in the fields of 
cancer and metabolic disease research (Shieh et al., 2019). To address 
this issue, we performed LASSO regression to develop a SNP-set asso
ciated with intelligence. Out of the 53 SNPs in our research, five 
(rs3788319, rs1879417, rs11556505, rs1879417 and rs11556505) were 
selected, and significant association was found between the SNP-set 
score and high intelligence loss. Moreover, the SNP-set score 

presented interactions with various fluoride exposure indicators on high 
intelligence, although we could only roughly quantify the interaction 
effects stratified by the median levels or permissible limits of four 
fluoride indexes and the median of the SNP-set score due to the limita
tion of sample size. These SNPs have been reported to be associated with 
mental and cognitive disorders possibly by regulating genes and proteins 
involved in neural development (Davies et al., 2014; Ferrari et al., 2017; 
Wigner et al., 2018). To our best knowledge, this is the first study to 
explore gene-fluoride interactions on intelligence at SNP-set level, 
which brings new insights into interpreting the potential mechanisms 
underlying susceptibility to fluoride-induced neurotoxicity. It is there
fore meaningful if our findings could be validated or similar studies 
could be conducted across different populations in the future. 

Recently, several studies have revealed the potential roles of genetic 
factors in the neurotoxicity caused by excessive fluoride in vivo and in 
vitro. For rats, COX1, COX2 and ERK/CREB signaling pathway may 
affect the impacts of fluoride on brain features and the memory ability 
by altering gene and protein expression (Dec et al., 2019), while NCAM 
and NF-kappaB were found related to fluoride-induced apoptosis of 
hippocampal neurons, partially through DNA damage and oxidative 
stress (Zhang et al., 2007; Zhang et al., 2008). However, to date, limited 
population-based studies have been performed to uncover the genetic 
association with fluoride exposure on intelligence. One study reported 
that DRD2 altered the relationship between fluoride exposure and IQ 
(Cui et al., 2018), and another study (Zhang et al., 2015) suggested that 
COMT might modify the susceptibility to the intelligence loss due to 
fluoride exposure. In our study, ARTP was performed to evaluate the 
gene-fluoride interactions on intelligence at gene level, by combining 
SNPs in a given gene. The results showed that CLU and TOMM40 
interacted with hair fluoride on intelligence, especially in females. Ac
cording to the previous reports, these two genes were mainly involved in 
mitochondrial dynamics (Herring et al., 2019; Puertas-Frias et al., 
2019), and may affect the nervous system by altering mitochondrial 
function. The stronger interactions in females imply that the specific 
gender may be more vulnerable to fluoride neurotoxicity (Green et al., 
2019). Since the limited mechanism studies of fluoride-induced neuro
toxicity and most animal studies have focused on fluoride exposure in 

Fig. 4. Changes of parameters in LASSO Binomial regression model for SNP-set selection. (A) The trajectory of each independent coefficient changes with L1 Norm 
(the sum of the absolute values of non-zero coefficients in the model). Each curve with different colors represents a SNP. The upper abscissa represents the number of 
non-zero coefficients in LASSO Binomial regression model. The number of non-zero coefficients decreases along with the decline of the L1 Norm, indicating the 
reduced number of variables. (B) The variation of binomial deviance with log (Lambda) value. The adjusted factors were age, sex, maternal education and 
paternal education. 

Table 3 
Components of the SNP-set and their relationships with high intelligence.  

SNP βLASSO
a Weightb,c OR (95% CI)c Pc 

rs3788319 0.1321831 − 0.281 0.76 (0.60, 0.96) 0.019 
rs1879417 − 0.04731035 − 0.273 0.76 (0.60, 0.97) 0.029 
rs57377675 0.05476791 − 0.241 0.79 (0.61, 1.01) 0.060 
rs11556505 − 0.06857724 − 0.518 0.60 (0.36, 0.99) 0.043 
rs7187776 0.05844264 − 0.257 0.77 (0.60, 1.00) 0.051 

Abbreviation: OR, odds ratio, the risk of intelligence loss, CI, confidence 
interval. 

a Regression coefficient for LASSO binomial regression.  

b Regression coefficient for multivariable logistic regression.  

c Adjustment: age, sex, maternal education and paternal education.  
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male rats (McPherson et al., 2018), the exact explanations need to be 
explored. Taken together, our findings suggested the potential role of 
mitochondrial function-related genes in the development of neurotox
icity induced by fluoride, with gender difference. Considering the 
genetically diverse nature of populations worldwide, these interactions 
are required to be identified across different populations and areas in the 
future. 

Pathway analysis provides the opportunity to combine association 
evidence from multiple genetic variants, thus potentially better identi
fying the relationships between pathways and health outcomes. In the 
current study, we found that Alzheimer disease pathway, metabolic 
pathway, signal transduction pathway, sphingolipid signaling pathway 
and PI3K-AKT signaling pathway interacted with fluoride in male chil
dren. Although we found interactions between hair fluoride with CLU 
and TOMM40, which were not enriched in any of the seven biological 
pathways in our study, no interaction between fluoride exposure with 
TOMM40-related pathway or CLU-related pathway was observed. Based 
on the published researches, these five pathways play important roles in 
neurogenesis, neuron growth, differentiation and survival (He et al., 
2018), energy metabolism (Cheon et al., 2019), oxidative stress and 
signal transduction (Lo Vasco, 2018). These neurodevelopmental phys
iological processes are closely related to mitochondria (Iannielli et al., 

2019), and their dysfunction may contribute to the risk of cognitive 
disability, neurodevelopment disorders and degenerative diseases. 
Considering the synergistic effects of genes, it might be reasonable to 
observe the interaction of fluoride exposure with the above-mentioned 
pathways but not single genes in these pathways. However, due to the 
limited research till now, further studies focusing on both male and fe
male animals with different exposure levels and periods of fluoride are 
still required to deeply explore the gene-fluoride interaction on intelli
gence, by collecting various biological samples and detecting the 
expression levels of key genes and proteins. Besides, the current findings 
need to be verified in vitro to illustrate the biological mechanisms of 
fluoride-induced neurotoxicity, especially at SNP-set, gene and pathway 
levels. In general, our findings revealed the pathways which might be 
involved in fluoride-induced neurotoxicity, and provided new insights 
for future studies to clarify the mechanisms that influence fluorosis by 
gene pathways on intelligence development. Notably, this is the first 
study to explore the neurotoxicity of fluoride at pathway level. 

Our study has several strengths. Using four fluoride exposure in
dicators including water fluoride, urinary fluoride, hair fluoride and nail 
fluoride, which reflect the external and internal, and short-term and 
long-term exposures, makes the evaluation of fluoride exposures more 
comprehensive and reliable. Besides, due to the relatively rare studies on 

Fig. 5. Relationships of the probability of high intelligence with different fluoride exposures of (A) water fluoride (B) urinary fluoride (C) nail fluoride (D) hair 
fluoride stratified by the median of SNP-set score. 
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low-to-moderate level fluoride exposure in hair and nail, our results also 
enrich the epidemiological evidence across different fluoride indicators 
and levels. Compared to previous studies which mainly focused on the 
effect of single SNP or gene on intelligence and its interaction with 
fluoride exposures, our study is the first one to explore the interactions 
between SNP-set and fluoride on intelligence loss. Besides, this is the 
first study that evaluated the gene-fluoride interactions at gene and 
pathway levels by using the ARTP method. Furthermore, selection bias 
in this study is relatively small given the comparable characteristics 
between the included and excluded children, along with 94.6% response 
rate in the multistage random sampling step. 

Our study also has limitations. Due to the case-control design based 
on a cross-sectional study, our study has limited power in identifying the 
causal relationship between fluoride exposures and intelligence. How
ever, based on the annual surveillance data from the local CDC, the 
fluoride contents kept stable in the study area, which makes the 
observed associations relatively reliable. But further studies with pro
spective design and repeated measures are still essential to validate our 
findings. Secondly, the components of the SNP-set may not be uniform 
across ethnicity, which limits its application in a standardized manner. 
However, it provides a novel approach to detect gene-environment in
teractions for fluorosis in other populations, and contributes primary 
data for future pooled analyses or multicenter studies. Due to the limited 
sample size, we could not draw a solid conclusion on the association 
between low intelligence and the five components of the SNP-set. Future 
studies with larger sample sizes are required to increase the statistical 
efficiency and precision. A limitation can’t be ignored is that some 
environmental risk factors such as pesticides, which are frequently used 
in rural areas, may contribute to children’s intelligence loss (Saeed et al., 
2020). Although these environmental risk factors might not be largely 

influenced by the distribution of fluoride in nature, the co-exposures to 
fluoride with other environmental pollutants may also exist. Therefore, 
the effect of fluoride on intelligence might be modified by these envi
ronmental risk factors partly. Furthermore, other potential confounders 
such as breastfeeding and nutritional status for the observed associations 
between fluoride and intelligence were not available in our study. 
Inadequate adjustment for these potential confounders may affect the 
precision of the evaluated association. Further studies with more 
comprehensive assessments of environmental exposures are needed to 
minimize the bias caused by the potential confounders. 

In summary, our study revealed inverse associations of fluoride ex
posures with intelligence. Furthermore, we found the interactions of 
fluoride with genetic variations involved in nervous system develop
ment and mitochondrial biological process at SNP-set, gene and 

Table 4 
Association of intelligence with individual gene, and their interactions with 
fluoride exposure on high intelligence among all children and stratified by sex, 
by top 4 genes.  

Gene All children Male Female  

Pa PFDR
a Pb PFDR

b,c Pb PFDR
b,c 

Individual gene       
COMT 0.049 0.496 0.023 0.317 0.560 0.949 
SLC25A12 0.065 0.496 0.457 0.670 0.039 0.663 
TH 0.162 0.496 0.056 0.317 0.940 0.949 
TUFM 0.122 0.496 0.049 0.317 0.627 0.949 

Interaction       
Water fluoride       

BDNF 0.268 0.523 0.012 0.102 0.355 0.802 
GSK3B 0.141 0.523 0.936 0.936 0.044 0.459 
NOS3 0.229 0.523 0.006 0.102 0.425 0.802 
SLC25A12 0.656 0.797 0.620 0.730 0.070 0.459 

Urinary fluoride       
BCL2L10 0.035 0.595 0.217 0.187 0.114 0.638 
GSK3B 0.135 0.595 0.722 0.925 0.061 0.519 
NOS3 0.140 0.595 0.011 0.187 0.940 0.955 
TH 0.258 0.690 0.029 0.247 0.737 0.895 

Hair fluoride       
CLU 0.153 0.650 0.862 0.997 0.001 0.017 
FOXO3 0.552 0.845 0.010 0.170 0.184 0.626 
FYN 0.077 0.650 0.589 0.902 0.075 0.425 
TOMM40 0.003 0.051 0.233 0.899 0.002 0.017 

Nail fluoride       
CLU 0.329 0.917 0.273 0.597 0.048 0.408 
FYN 0.048 0.845 0.656 0.777 0.007 0.119 
GSK3B 0.246 0.845 0.009 0.153 0.960 0.987 
TOMM40 0.343 0.816 0.540 0.765 0.078 0.442  

a Adjustment: age, sex, maternal education and paternal education.  

b Adjustment: age, maternal education and paternal education.  

c The P-value was adjusted using false discovery rate method for multiple 
testing.  

Table 5 
Association of intelligence with pathways, and their interactions with fluoride 
exposure on high intelligence among all children and stratified by sex.  

Pathway All children Male Female 
Pa PFDR

a Pb PFDR
b,c Pb PFDR

b,c 

Individual pathway       
Dopaminergic synapse 0.118 0.434 0.044 0.249 0.935 0.994 
Alzheimer disease 0.618 0.802 0.592 0.753 0.658 0.994 
Neurotrophin 0.924 0.924 0.747 0.753 0.994 0.994 
Metabolic 0.124 0.434 0.071 0.249 0.355 0.994 
Signal transduction 0.687 0.802 0.709 0.753 0.737 0.994 
Sphingolipid 0.517 0.802 0.597 0.753 0.510 0.994 
PI3K-AKT 0.599 0.802 0.753 0.753 0.642 0.994 
Interaction       
Water fluoride       
Dopaminergic synapse 0.280 0.362 0.494 0.494 0.182 0.501 
Alzheimer disease 0.028 0.196 0.007 0.049 0.262 0.501 
Neurotrophin 0.269 0.362 0.259 0.302 0.197 0.501 
Metabolic 0.517 0.517 0.032 0.074 0.700 0.700 
Signal transduction 0.278 0.362 0.053 0.074 0.358 0.501 
Sphingolipid 0.310 0.362 0.036 0.074 0.616 0.700 
PI3K-AKT 0.204 0.362 0.051 0.074 0.295 0.501 
Urinary fluoride       
Dopaminergic synapse 0.190 0.286 0.520 0.520 0.138 0.402 
Alzheimer disease 0.044 0.286 0.024 0.074 0.243 0.402 
Neurotrophin 0.183 0.286 0.197 0.230 0.154 0.402 
Metabolic 0.485 0.485 0.051 0.074 0.850 0.921 
Signal transduction 0.204 0.286 0.030 0.074 0.287 0.402 
Sphingolipid 0.305 0.356 0.041 0.074 0.921 0.921 
PI3K-AKT 0.139 0.286 0.053 0.074 0.242 0.402 
Hair fluoride       
Dopaminergic synapse 0.992 0.992 0.980 0.980 0.969 0.988 
Alzheimer disease 0.960 0.992 0.926 0.980 0.988 0.988 
Neurotrophin 0.435 0.992 0.039 0.217 0.075 0.264 
Metabolic 0.897 0.992 0.647 0.906 0.670 0.938 
Signal transduction 0.311 0.992 0.585 0.906 0.151 0.264 
Sphingolipid 0.261 0.992 0.433 0.906 0.089 0.264 
PI3K-AKT 0.796 0.992 0.062 0.217 0.120 0.264 
Nail fluoride       
Dopaminergic synapse 0.130 0.624 0.049 0.676 0.160 0.373 
Alzheimer disease 0.446 0.624 0.078 0.179 0.778 0.996 
Neurotrophin 0.568 0.663 0.041 0.179 0.996 0.996 
Metabolic 0.361 0.624 0.579 0.676 0.361 0.632 
Signal transduction 0.274 0.624 0.102 0.179 0.053 0.186 
Sphingolipid 0.185 0.624 0.997 0.997 0.019 0.133 
PI3K-AKT 0.753 0.753 0.079 0.179 0.975 0.996 

Abbreviation: Dopaminergic synapse, Dopaminergic synapse pathway; Alz
heimer disease, Alzheimer disease pathway, Neurotrophin, Neurotrophin 
signaling pathway, Metabolic, Metabolic pathway, Signal transduction, Signal 
transduction pathway, Sphingolipid, Sphingolipid signaling pathway, PI3K- 
AKT, PI3K-AKT signaling pathway. 

a Adjustment: age, sex, maternal education and paternal education.  

b Adjustment: age, maternal education and paternal education.  

c The P-value was adjusted using false discovery rate method for multiple 
testing.  
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pathway level. The current findings suggest that mitochondrial function- 
related genes as CLU and TOMM40, and multiple neurodevelopmental 
biological pathways related to metabolism might be involved in the 
fluoride-induced neurotoxicity. Our study provides a novel insight into a 
better understanding of differential susceptibility of fluoride-induced 
neurotoxicity, which is meaningful for public prevention of fluorosis 
for children. 
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