1. |
Ozsvath, DL. Fluoride and environmental health: a review. Rev Environ Sci Biotechnol 2009; 8:59–79
Google Scholar | Crossref
|
2. |
USNRC. Health effects of ingested fluoride. Washington D.C.: National Research Council, National Academy Press, 1993
Google Scholar
|
3. |
Zuo, H, Chen, L, Kong, M, Qiu, L, Lü, P, Wu, P, Yang, Y, Chen, K. Toxic effects of fluoride on organisms. Life Sci 2018; 198:18–24
Google Scholar | Crossref | Medline
|
4. |
Chouhan, S, Flora, SJ. Effects of fluoride on the tissue oxidative stress and apoptosis in rats: biochemical assays supported by IR spectroscopy data. Toxicology 2008; 254: 61–7
Google Scholar | Crossref | Medline | ISI
|
5. |
Pastor, RF, Restani, P, Di Lorenzo, C, Orgiu, F, Teissedre, PL, Stockley, C, Ruf, JC, Quini, CI, GarcìaTejedor, N, Gargantini, R, Aruani, C, Prieto, S, Murgo, M, Videla, R, Penissi, A, Iermoli, RH. Resveratrol, human health and winemaking perspectives. Crit Rev Food Sci Nutr 2019; 59:1237–55
Google Scholar | Crossref | Medline
|
6. |
Burns, J, Yokota, T, Ashihara, H, Lean, ME, Crozier, A. Plant foods and herbal sources of resveratrol. J Agric Food Chem 2002; 50:3337–40
Google Scholar | Crossref | Medline | ISI
|
7. |
Yeh, CB, Hsieh, MJ, Lin, CW, Chiou, HL, Lin, PY, Chen, TY, Yang, SF. The antimetastatic effects of resveratrol on hepatocellular carcinoma through the downregulation of a metastasis-associated protease by SP-1 modulation. PLoS One 2013; 8:e56661
Google Scholar | Crossref | Medline
|
8. |
Abolaji, AO, Adedara, AO, Adie, MA, Vicente-Crespo, M, Farombi, EO. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem Biophys Res Commun 2018; 503: 1042–8
Google Scholar | Crossref | Medline
|
9. |
Howitz, KT, Bitterman, KJ, Cohen, HY, Lamming, DW, Lavu, S, Wood, JG. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425:191–6
Google Scholar | Crossref | Medline | ISI
|
10. |
Baur, JA, Pearson, KJ, Price, NL, Jamieson, NL, Lerin, C, Kalra, A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444:337–42
Google Scholar | Crossref | Medline | ISI
|
11. |
Bier, E. Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 2005; 6:9–23
Google Scholar | Crossref | Medline
|
12. |
Adedara, IA, Klimaczewski, CV, Barbosa, NB, Farombi, EO, Souza, DO, Rocha, JB. Influence of diphenyl diselenide on chlorpyrifos-induced toxicity in Drosophila melanogaster. J Trace Elem Med Biol 2015; 32:52–9
Google Scholar | Crossref | Medline
|
13. |
Benford, DJ, Hanley, AB, Bottrill, K, Oehlschlager, S, Balls, M, Brance, F, Castegnara, JJ, Descotes, J, Hemminiky, K, Lindsay, D, Schilter, B. Biomarkers as predictive tools in toxicity testing: the report and recommendations of ECVAM workshop 40. Altern Lab Anim 2000; 28:119–31
Google Scholar | SAGE Journals
|
14. |
Atmaca, N, Atmaca, HT, Kanici, A, Anteplioglu, T. Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity in rats. Food Chem Toxicol 2014; 70:191–7
Google Scholar | Crossref | Medline
|
15. |
Pal, S, Sarkar, C. Protective effect of resveratrol on fluoride induced alteration in protein and nucleic acid metabolism, DNA damage and biogenic amines in rat brain. Environ Toxicol Pharmacol 2014; 38:684–99
Google Scholar | Crossref | Medline
|
16. |
Sharma, C, Suhalka, P, Bhatnagar, M. Curcumin and resveratrol rescue cortical-hippocampal system from chronic fluoride-induced neurodegeneration and enhance memory retrieval. Int J Neurosci 2018; 13:1–15
Google Scholar
|
17. |
Feany, MB, Bender, WW. A drosophila model of Parkinson’s disease. Nature 2000; 404:394–8
Google Scholar | Crossref | Medline | ISI
|
18. |
Farombi, EO, Abolaji, AO, Farombi, TH, Oropo, AS, Owoje, OA, Awunah, MT. Garcina kola seeds biflavonoid fraction (kolaviron), increases longevity and attenuates rotenone induced toxicity in Drosophila melanogaster. Pestic Biochem Physiol 2018; 145:39–45
Google Scholar | Crossref | Medline
|
19. |
Lowry, OH, Rosebrough, NJ, Farr, AL, Randall, RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193:265–75
Google Scholar | Crossref | Medline | ISI
|
20. |
Ellman, GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82:70–7
Google Scholar | Crossref | Medline | ISI
|
21. |
Habig, WH, Jakoby, WB. Assays for differentiation of glutathione-S-transferases. Meth Enzymol 1981; 77:398–405
Google Scholar | Crossref | Medline
|
22. |
Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121-126
Google Scholar
|
23. |
Ellman, GL, Courtney, KD, Andres, V, Feathers-Stone, RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7:88–95
Google Scholar | Crossref | Medline | ISI
|
24. |
Wolff, SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Meth Enzymol 1994; 233:182–9
Google Scholar | Crossref | ISI
|
25. |
Eleftherianos, I, More, K, Spivack, S, Paulin, E, Khojandi, A, Shukla, S. Nitric oxide levels regulate the immune response of Drosophila melanogaster reference laboratory strains to bacterial infections. Infect Immun 2014; 82:69–81
Google Scholar | Crossref
|
26. |
Song, C, Zhao, J, Fu, B, Li, D, Mao, T, Peng, W, Wu, H, Zhang, Y. Melatonin-mediated upregulation of Sirt3 attenuates sodium fluoride-induced hepatotoxicity by activating the MT1-PI3K/AKT-PGC-1? signaling pathway. Free Radic Biol Med 2017; 112:616–30
Google Scholar | Crossref | Medline
|
27. |
Ameeramja, J, Panneerselvam, L, Govindarajan, V, Jeyachandran, S, Baskaralingam, V, Perumal, E. Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells. J Hazard Mater 2016; 301:554–65
Google Scholar | Crossref | Medline
|
28. |
Hamza, RZ, Nahla, S, El-Shenawy , Ismail, HAA. Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat. J Basic Clin Phys Pharm 2014; 26:3
Google Scholar
|
29. |
Miranda, GHN, Gomes, BAQ, Bittencourt, LO, Aragão, WAB, Nogueira, LS, Dionizio, AS, Buzalaf, MAR, Monteiro, MC, Lima, RR. Chronic exposure to sodium fluoride triggers oxidative biochemistry misbalance in mice: effects on peripheral blood circulation. Oxid Med Cell Longev 2018; 2018:8379123
Google Scholar | Crossref | Medline
|
30. |
Zhou, Y, Zhang, H, He, J, Chen, X, Ding, Y, Wang, Y, Liu, X. Effects of sodium fluoride on reproductive function in female rats. Food Chem Toxicol 2013; 56:297–303
Google Scholar | Crossref | Medline
|
31. |
Chioca, LR, Müller, JC, Boareto, AC, Andreatini, R, Dalsenter, PR. Sodium fluoride does not alter sperm production or sperm morphology in rats. Braz Arch Biol Technol 2012; 55:257–262
Google Scholar | Crossref
|
32. |
Charpentier, A, Fournie, D. Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pestic Biochem Phys 2001; 70:100–7
Google Scholar | Crossref
|
33. |
Dutta, M, Rajak, P, Khatun, S, Roy, S. Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure. Chemosphere 2017; 166:255–66
Google Scholar | Crossref | Medline
|
34. |
Colhoun, EH. The physiological significance of acetylcholine in insects and observations upon other pharmacologically active substances advances in insect. Physiology 1963; 1:1–46
Google Scholar
|
35. |
Farina, M, Avila, DS, Rocha, JBT, Aschner, M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 2013; 62:575–94
Google Scholar | Crossref | Medline
|
36. |
AebiH Catalase in vitro. Meth Enzymol 1984; 105:121–6
Google Scholar | Crossref | Medline
|
37. |
Yadav, SS, Kumar, R, Khare, P, Tripathi, M. Oxidative stress biomarkers in the freshwater fish, Heteropneustes fossilis (bloch) exposed to sodium fluoride: antioxidant fefense and role of ascorbic acid. Toxicol Int 2015; 22:71–6
Google Scholar | Crossref | Medline
|
38. |
Abolaji, AO, Kamdem, JP, Lugokenski, TH, Farombi, EO, Souza, DO, da Silva Loreto, EL, Rocha, J. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster. Redox Biol 2015; 5:328–39
Google Scholar | Crossref | Medline | ISI
|
39. |
Garcia-Garcia, A, Zavala-Flores, L, Rodriguez-Rocha, H, Franco, R. Thiol-Redox signaling, dopaminergic cell death, and Parkinson’s disease. Antioxid Redox Signal 2012; 17:1764–84
Google Scholar | Crossref | Medline
|
40. |
Jones, DP, Liang, Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic Biol Med 2009; 47:1329–38
Google Scholar | Crossref | Medline
|
41. |
Erel, O, Neselioglu, S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 2014; 47:326–32
Google Scholar | Crossref | Medline | ISI
|
42. |
Sener, S, Akbas, A, Kilinc, F, Baran, P, Erel, O, Aktas, A. Thiol/disulfide homeostasis as a marker of oxidative stress in rosacea: a controlled spectrophotometric study. Cutan Ocul Toxicol 2019; 38:55–8
Google Scholar | Crossref | Medline
|
43. |
Buchwalow, I, Schnekenburger, J, Samoilova, V, Boecker, W, Neumann, JK. Tiemann New insight into the role of nitric oxide pathways in pancreas. Acta Histochem Cytochem 2018; 51:167–72
Google Scholar | Crossref | Medline |