Abstract
The maior pathway of fluoride elimination from the human body is the kidney. The discharge of fluoride into urine depends on the clearance of the kidney. Fluoride in serum of hemodialysis patients is higher than that of healthy subjects. Fluoride is not reduced sufficiently with hemodialysis. Those patients are in the same condition as being exposed to high level of fluoride for a long time.
In this study, serum fluoride and bone mineral density (BMD) were measured in 93 patients (45 males and 48 females, aged 29 – 86) to clarify effects of fluoride on the bone metabolism. BMD of the third lumbar spine and the distal 1/3 of the radius were measured by dual energy X-ray absorptiometry.
Both in male and female patients, serum fluoride and BMD of the lumbar spine increased and BMD of the radius decreased for a year. Relative changes of BMD of the lumbar spine had a high correlation with those of serum fluoride (male: r=0.81, p<0.05, female: r=0.74, p<0.01).
BMD of the lumbar spine was mainly influenced by fluoride in serum.
-
-
Renal osteodystrophy in patients on long-term hemodialysis with fluoridated water
Serum and bone fluoride concentrations of ten patients maintained on long-term hemodialysis with fluoridated water (1 ppm, i.e., 50uM) were correlated with duration of treatment and the occurrence of clinical, radiological, and histological manifestations of bone disease. Two patients had symptomatic renal osteodystrophy when accepted on the program, whereas six
-
Serum ionic fluoride levels in haemodialysis and continuous ambulatory peritoneal dialysis patients
High serum fluoride (F-) in patients with chronic renal failure (CRF) and end-stage renal disease (ESRD) is associated with risk of renal osteodystrophy and other bone changes. This study was done to determine F- in normal healthy controls and patients with ESRD on haemodialysis (HD) or peritoneal dialysis (PD). Seventeen
-
Fluoride and strontium accumulation in bone does not correlate with osteoid tissue in dialysis patients
BACKGROUND: Osteomalacia is now a rare disease in dialysis patients in developed countries since the withdrawal of aluminium overload. The involvement of fluoride and strontium in the pathogenesis of the disease has been suggested. The aim of this study was to investigate a possible association between osteomalacia in dialysis patients
-
Osteomalacia is associated with high bone fluoride content in dialysis patients
Osteomalacia is now rarely observed in hemodialyzed patients since the prevention of aluminum intoxication and vitamin D deficiency. However, this disorder is still present and may be responsible for bone fractures. Fluoride overload is responsible for mineralization defects. We therefore prospectively measured the bone fluoride content in all dialysis osteomalacic
-
Association between fluoride, magnesium, aluminum and bone quality in renal osteodystrophy
INTRODUCTION: Trace elements are known to influence bone metabolism; however, their effects may be exacerbated in renal failure because dialysis patients are unable to excrete excess elements properly. Our study correlated bone quality in dialysis patients with levels of bone fluoride, magnesium, and aluminum. A number of studies have linked
Related Studies :
-
-
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
-
Fluoridation, Dialysis & Osteomalacia
In the 1960s and 1970s, doctors discovered that patients receiving kidney dialysis were accumulating very high levels of fluoride in their bones and blood, and that this exposure was associated with severe forms of osteomalacia, a bone-softening disease that leads to weak bones and often excruciating bone pain. Based on
-
Fluoridation of drinking water and chronic kidney disease: Absence of evidence is not evidence of absence
A fairly substantial body of research indicates that patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. Patients with reduced glomerular filtration rates have a decreased ability to excrete fluoride in the urine. These patients may develop skeletal fluorosis even at 1 ppm fluoride in the drinking water.
Related FAN Content :
-