Fluoride Action Network

Abstract

Overexposure to fluoride from environmental sources can cause serious public health problems. Disrupted osteoblast function and impaired bone formation were found to be associated with excessive fluoride exposure. A massive analysis of microRNAs (miRNAs) was used to figure out the possible pathways in which fluoride affects osteoblast function. MC3T3-E1 cells were treated with 8 mg/L of fluorine for 7 days. Total RNA of cells was extracted, and their integrity and purity were tested. RNA samples were analyzed by using miRNA array, including miRNA labeling, hybridization, scanning, and expression data analysis to compare the profiling of miRNA expression between control and fluoride-treated group. Transcriptome analysis console and enrichment analysis calculated by miRSystem were used to predict target genes and collect miRNAs pathway maps. Forty-five upregulated and 31 downregulated miRNAs expression were found in the fluoride-treated group, and most of the verified miRNAs were mature. The KEGG pathway enrichment analysis searched out 36 pathways that scored more than 0.1. These pathways mainly included intracellular signaling, cytokines, metabolism, and cytoskeleton-related pathways. Among them, the Wnt, insulin, TGF-beta, hedgehog, VEGF, and notch pathways in osteoblasts were those mainly affected by fluoride treatment. These results have shown a number of higher level systemic pathways activated by overexposure of fluoride in osteoblastic cells and verified that fluoride affected the molecular crosstalk in the osteoblasts.