Abstract
The observation of higher plasma flouride levels in our hemodialysis (HD) patients than our continuous ambulatory peritoneal dialysis (CAPD) patients (4.0 +/- 0.5 mumol/L [n = 17] v 2.5 +/- 0.3 mumol/L [n = 17], P less than 0.005) prompted an evaluation of fluoride metabolism during HD. We found that serum fluoride was completely ultrafiltrable across cuprophane membranes (99% +/- 4%) and that HD produced acute changes in plasma fluoride levels that correlated well with the fluoride gradient between plasma and dialysis fluid at the start of dialysis. Our HD fluids contained significantly higher fluoride concentrations than were present in commercially prepared peritoneal dialysis fluid. Our fluids are prepared from fluoridated tap water that is purified by reverse osmosis (RO). We conclude that the different concentrations of fluoride in our dialysis fluids account for the differences in the plasma flouride concentrations between our dialysis groups. Since many HD units rely on RO systems to purify fluoridated tap water, it is likely that many HD patients are being exposed inadvertently to increased concentrations of fluoride.
-
-
Long-term follow up of ionic plasma fluoride level in patients receiving hemodialysis treatment
The elimination half-life of fluoride is significantly increased in patients with chronic renal failure. This led us to conduct a study of variations of its plasma levels in 35 patients receiving dialysis treatment. In this population, there is a gaussian distribution of the values before and after the hemodialysis session,
-
The effect of hemodialysis upon serum levels of fluoride
Serum and dialysate ionic fluoride (F-) were determined in 29 patients under hemodialysis (HD) treatment. Serum creatinine (Cr), blood urea nitrogen (BUN) and phosphorus (P) were also examined before and after HD in 92 patients including the above 29 patients under the same treatment. Results reveal that serum F- levels
-
Studies on serum fluoride and bone metabolism in patients with long term hemodialysis
With growing experience of the long-term treatment of patients with end stage renal disease by hemodialysis, the safety of fluoridated water supply for dialysate and the effect on the bone metabolism has been discussed. In this study, concentrations of fluoride (F), calcium (Ga). aluminum (AI) and biochemical indices of bone metabolism,
-
Pattern of renal osteodystrophy in haemodialysis patients in Saudi Arabia
In order to know the pattern of renal osteodystrophy in haemodialysis patients in Saudi Arabia we conducted a multicentre study involving 209 patients. The mean age of the patients was 39.4 +/- 14 (18-70) years, 128 were males and 81 females. All patients were on acetate dialysate and their mean
-
Effects of fluoride on bone metabolism in patients with hemodialysis
The maior pathway of fluoride elimination from the human body is the kidney. The discharge of fluoride into urine depends on the clearance of the kidney. Fluoride in serum of hemodialysis patients is higher than that of healthy subjects. Fluoride is not reduced sufficiently with hemodialysis. Those patients are in
Related Studies :
-
-
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Similarities between Skeletal Fluorosis and Renal Osteodystrophy
It is quite possible, and indeed likely, that some kidney patients diagnosed with renal osteodystrophy are either suffering from skeletal fluorosis or their condition is being complicated/exacerbated by fluoride exposure.
-
Fluoridation, Dialysis & Osteomalacia
In the 1960s and 1970s, doctors discovered that patients receiving kidney dialysis were accumulating very high levels of fluoride in their bones and blood, and that this exposure was associated with severe forms of osteomalacia, a bone-softening disease that leads to weak bones and often excruciating bone pain. Based on
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
Related FAN Content :
-