Abstract
Acute fluoride poisoning is associated with sudden cardiac death by an unknown mechanism. Because F- binds to Ca2+ to cause marked hypocalcemia, lowered serum Ca2+ concentrations have been thought to be a major underlying factor in the ventricular irritability of F(-)-toxic patients. However, correction of the hypocalcemia does not prevent sudden death. Paradoxically, while decreasing extracellular Ca2+ levels, in vitro studies have shown F- increases intracellular Ca2+, which is thought to trigger Ca2+-dependent K+ channels and produce a K+ efflux. The K+ efflux may be important clinically, as patients with F- overdose can exhibit hyperkalemia shortly before cardiovascular collapse. In erythrocyte suspensions, we found that propranolol, which increases the sensitivity of the Ca2+-dependent K+ channels, exacerbates the efflux, and quinidine, which blocks the channel, prevents the efflux. In six dogs, 35 mg/kg of sodium fluoride given intravenously produced intractable ventricular fibrillation within 140 minutes. Four dogs given 200 mg of quinidine sulfate with the sodium fluoride developed no ventricular arrhythmias. The data indicate that F–induced hyperkalemia is important in sudden cardiac death following acute fluoride toxicity and that this hyperkalemia is mediated by Ca2+-dependent K+ channels.
-
-
Buffalo (Bubalus bubalis) epiphyseal proteins give protection from arsenic and fluoride-induced adverse changes in acetylcholinesterase activity in rats
The objective of this study was to determine the effect of fluoride (F) and arsenic (As) on the activity of acetylcholinesterase (AChE), a critically important nervous system enzyme, and to test the protective role of buffalo epiphyseal (pineal) proteins (BEP) in rats. Arsenic (20 mg/kg BW, intraperitoneally) and F (150
-
Alterations in plasma and tissue acetylcholinesterase activity following repeated oral exposure of chlorpyrifos alone and in conjunction with fluoride in Wistar Rats
Concurrent exposures of more than one environmental contaminants are commonly encountered by human beings and animals. This study investigated the effect of chlorpyrifos alone and in conjunction with fluoride on plasma and tissue acetylcholinesterase (AChE) activity in wistar rats. Fluoride at 1 or 10 ppm in drinking water produced significant (P < 0.05)
-
On the Physiological and Medicinal Action of Hydrofluoric Acid and the Fluorides.
EXCERPTS: General Summary. 1. On account of the corrosive action of these substances on glass vessels their use in ordinary therapeutics seems beset by many difficulties. But by attending to a few precautions these obstacles can be so minimized as to be practically overcome. 2. The topical action of strong hydrofluoric acid differs
-
Fluoride in Drinking Water: A Scientific Review of EPA’s Standards.
Excerpts: Summary Under the Safe Drinking Water Act, the U.S. Environmental Protection Agency (EPA) is required to establish exposure standards for contaminants in public drinking-water systems that might cause any adverse effects on human health. These standards include the maximum contaminant level goal (MCLG), the maximum contaminant level (MCL), and the secondary
-
Effect of fluoride on enzymes from serum, liver, kidney, skeletal and heart muscles of mice.
White mice maintained on water containing 100 ppm NaF showed changes in the enzyme level in serum, liver, kidney, heart and skeletal muscles. Enzymes studies were alkaline phosphatase (ALP), acid phosphatase (AcP), glutamate-oxalacetate transaminase (GOT), glutamate-pyruvate transaminase (GPT), lactic dehydrogenase (LDH), isocitric dehydrogenase (ICDH) and cholinesterase (CE). AcP was markedly
Related Studies :
-
-
-
Fluoride & Electrocardiogram Abnormalities
An electrocardiogram (ECG) is a diagnostic test that measures the electrical activity of the heart. An ECG can reveal heart rate, heart rhythym (i.e. steady or irregular), and the strength and timing of the heart’s natural electrical signals. ECGs are described in terms of “waves” (e.g. amplitude and duration). Problems
-
Fluoride & Myocardial Damage
Structural damage to the heart resulting from fluoride toxicity has been observed in numerous human and animal studies. The general features of this damage include cloudy swelling, vacuolization or vacuolar degeneration, hemorrhages, interstitial edema, fibrous necrosis, dissolution of nuclei, and thickening of the vessel walls in the heart muscle (Basha
-
Fluoride & Arterial Calcification
The major change involved with cardiovascular disease is development of atherosclerosis in critical arteries, which is partially characterized by vascular calcification. The level of coronary artery calcification is thought to be the most important indicator of future cardiovascular events. Increased arterial calcifications have frequently been reported in those with skeletal fluorosis
-
Fluoride & Arteriosclerosis
Healthy arteries are flexible and elastic, allowing efficient transfer of blood and nutrients from the heart to the rest of the body. Arteriosclerosis refers to a stiffening of the arteries, including loss of elasticity. This is a slow, progressive disease that may begin early in life from damage to the
-
Fluoride, Blood Pressure and Hypertension
Individuals with blood pressure readings that exceed 140/90 are considered hypertensive. Hypertension can increase the risk of stroke, heart attack, heart failure, aortic aneurysms, and peripheral arterial disease. An association between increased fluoride in ground water and increased prevalence of hypertension has been observed, especially among adult males (Amini et
Related FAN Content :
-