Fluoride Action Network


OBJECTIVE: The aim of the study was to assess dental fluorosis (DF) in the deciduous and permanent teeth of children in areas with high-F coal (area A) and high-F water (area C) compared to children from area B, with low-F water and coal.

MATERIAL AND METHODS: 596 children were examined. DF was assessed by TF-score. F-content of indoor air, drinking water, coal, tea, rice, and maize was analyzed.

RESULTS: F-content of air and coal ranged from 3.2 microg/m(3) and 25.8 mg/kg (area B), 3.8 microg/m(3) and 36.3 mg/kg (area C) to 56.8 microg/m(3) and 713.1 mg/kg (area A). Likewise, mean F-content of water ranged from approximately 0.50 mg/l (areas A and B) to 3.64 mg/l (area C). F-content of tea leaves was similar in all three areas. Maize and rice contained <5 mg F/kg. Prevalence of primary teeth with DF was 49.1%, 2.0%, and 66.8% in areas A, B, and C, respectively. Similarly, DF was found in 96.7% (area A), 19.6% (area B), and 94.4% (area C) of the permanent teeth. Severe fluorosis (TF > or = 5) was found in area A (47.0%) and area C (36.1%) (p<0.01). Early erupting teeth had slightly higher mean TF-scores in area A than in area C.

CONCLUSIONS: DF was prevalent in both dentitions in areas A and C. Similarity in percentages of DF may indicate that indoor air with approximately 60 microg F/m(3) and drinking water with 3.6 mg F/L are similarly toxic to developing permanent teeth. The percentage of deciduous teeth with DF was significantly lower in area A compared to area C. Where low-F coal and low-F water were used (area B), approximately 20% of permanent teeth had DF, indicating a relatively low tolerance to fluoride in Chinese children brought up under the present living conditions.