Abstract
Consumption of high concentration of fluoride in the drinking water would cause the fluorosis and chronic pain. Similar pain syndrome appeared in the patients in fluoride therapy of osteoporotic. The aim of the current study was to examine whether exposing immature mice to fluoride would modify the peripheral pain sensitivity or even cause a pain syndrome. We gave developmental fluoride exposure to mice in different concentration (0mg/L, 50mg/L and 100mg/L) and evaluated their basal pain threshold. Von Frey hair test, hot plate test and formalin test were conducted to examine the mechanical, thermal nociceptive threshold and inflammatory pain, respectively. In addition, the expression of hippocampal brain-derived neurotrophic factor (BDNF) was also evaluated by Western blotting. Hyperalgesia in fluoride exposure mice was exhibited in the Von Frey hair test, hot plate test and formalin test. Meanwhile, the expression of BDNF was significantly higher than that of control group. The results suggest that early developmental fluoride exposure may lower the basal pain threshold and be associated with the increasing of BDNF expression in hippocampus.
-
-
Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: Involvement of the a7 nicotinic receptor and oxidative stress.
Daily exposure to fluoride (F) depends mainly on the intake of this element with drinking water. When administered during gestation and lactation, F has been associated with cognitive deficits in the offspring. However, the mechanisms underlying the neurotoxicity of F remain obscure. In the current study, we investigated the effects
-
Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.
The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled
-
Long-term exposure to fluoride as a factor promoting changes in the expression and activity of cyclooxygenases (COX1 and COX2) in various rat brain structures.
Highlights long-term exposure to fluoride during the development leads to the decrease in the expression of COX1 and COX2 in the brain. a statistically significant increase in PGE2 concentration and COX2 immunexpression was observed in hippocampus. exposure to fluoride in the prenatal and neonatal period may result in the development
-
Effects of fluoride and lead on N-methyl-D-aspartate receptor 1 expression in the hippocampus of offspring rat pups
To investigate whether excitotoxicity is involved in neurotoxicity of fluoride (F) alone and in combination with lead (Pb), the expression levels of the gene and protein N-methyl-D-aspartate receptor 1 (NMDAR1) in the hippocampus of offspring rat pups at postnatal days 14 and 28 exposed to F and/or Pb were determined by quantitative real-time polymerase
-
Pathologic changes and effect on the learning and memory ability in rats exposed to fluoride and aluminum
Background: The aim of this study is to establish a single and combined intoxication model of fluoride and aluminum so as to observe the impact of these chemicals on the learning and memory ability and the pathologic changes in brain of rats. Methods: Forty male Wistar rats were randomly assigned
Related Studies :
-
-
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & IQ: 67 Studies
As of May 2020, a total of 75 studies have investigated the relationship between fluoride and human intelligence. Of these investigations, 67 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while over 60 animal studies have found that fluoride exposure impairs the learning and/or
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
Related FAN Content :
-