Fluoride Action Network

Fluoride Affects Learning & Memory in Animals

Fluoride Action Network | Updated by Ellen Connett | September 2019

An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out of over 70 studies) where mice or rats treated with fluoride were found to suffer impairments in their learning and/or memory abilities. Although a few animal studies have failed to find this association, (Varner 1994; Whitford 2009; McPherson 2018), the clear majority of both animal and human research indicates that fluoride can damage cognitive function.

Studies Finding an Effect on Learning ANd/or Memory

“The present study reveals that exposure to F in early stages of rat development leads to impairment of memory in young offspring..” SOURCE: Bartos M, Gumilar F, Gallegos CE, et al. (2019). Effects of Perinatal Fluoride Exposure on Short- and Long-Term Memory, Brain Antioxidant Status, and Glutamate Metabolism of Young Rat Pups. International Journal of Toxicology, June 20.
“Using Sprague-Dawley rats exposed to sodium fluoride from 60 days before pregnancy until 6 months post-delivery as in vivo model, we showed that fluoride impaired the learning and memory abilities of offspring rats, with decreased neuronal number, suppressed autophagy and enhanced apoptosis in hippocampus.”
SOURCE: Zhou G, Tang S, Yang L, et al. (2019). Effects of long-term fluoride exposure on cognitive ability and the underlying mechanisms: Role of autophagy and its association with apoptosis. Toxicology and Applied Pharmacology 378:114608.
“Using Sprague-Dawley rats developmentally exposed to sodium fluoride (NaF) from pregnancy until 6 months of delivery as in vivo model, we showed that fluoride impaired the cognitive abilities of offspring rats, decreased the density of dendritic spines and the expression of synapse proteins synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) in hippocampus, suggesting fluoride-induced cognitive deficit associates with synaptic impairment…
SOURCE: Chen J, Niu Q, Xia T, et al. (2019). ERK1/2-mediated disruption of BDNF–TrkB signaling causes synaptic impairment contributing to fluoride–induced developmental neurotoxicity. Toxicology [Epub ahead of print].
“F exposure during embryonic to suckling stages impaired the learning and memory ability of the mouse pups.”
SOURCE: Sun Z, Zhang Y, Xue X, et al. (2018). Maternal fluoride exposure during gestation and lactation decreased learning and memory ability, and glutamate receptor mRNA expressions of mouse pups. Human and Experimental Toxicology 37(1):87-93.

“This study investigated the molecular mechanism of brain impairment induced by drinking fluoridated water and selenium intervention. Results showed that the learning and memory of rats in NaF group significantly decreased.
SOURCE: Zheng X, et al. (2016).  Molecular mechanism of brain impairment caused by drinking-acquired fluorosis and selenium intervention. Environmental Toxicology and Pharmacology 43:134-139.

“The results of the present study showed no behavioural deficits in the control group of animals however, the rats that received fluoride water exhibited impairment in their spatial learning and memory deficits. The deficits are not marked in the vitamin C and G. biloba groups. To conclude chronic exposure to high levels of fluoride causes severe impairment in the spatial learning and memory, these deficits can be ameliorated with the vitamin C and G. biloba.”
SOURCE: Jetti R, et al. (2016). Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride. Toxicology and Industrial Health 32(1):183-7.

“In the present study postnatal rats aged day 21 and day 30 demonstrated loss of memory, learning inability and there was a consider able increase in the goal achieve latency period in NaF treated group when compared to the control pups.”
SOURCE: Mesram N, et al. (2016). Quercetin treatment against NaF induced oxidative stress related neuronal and learning changes in developing rats. Journal of King Saud University – Science. [Epub ahead of print]

“Our results showed that as compared to controls, the abilities of learning and memory were declined in the adult rats and the offspring rats of postnatal day 28 in the fluoride groups.”
SOURCE: Dong YT, et al. (2015). Deficit in learning and memory of rats with chronic fluorosis correlates with the decreased expressions of M1 and M3 muscarinic acetylcholine receptors. Archives of Toxicology 89(11):1981-91.

“The present study revealed that the chronic exposure of 20 ppm sodium fluoride led to loss of motor control, learning ability, antioxidants (SOD, Vitamin A) and oxidation of lipids inbrains of developing rats.”
SOURCE: Reddy R, Reddy BKP. (2015). Vitamin A deficiency: An oxidative stress marker in sodium fluoride (NaF) induced oxidative damage in developing rat brain. International Journal of Developmental Neuroscience 47:298-303.

“In this study, we observed that the administration of F was associated with cognitive impairment as evidenced by reduction of retention latency in passive avoidance behavior. These results are in conformity with findings of other workers who also demonstrated cognitive impairment after administration of fluoride.”
SOURCE: Jain A, et al. (2015). Melatonin ameliorates fluoride induced neurotoxicity in young rats: an in vivo evidence. Asian Journal of Pharmaceutical and Clinical Research 8(4):164-67.

Although there was no significant difference between all groups, both fluoride and aluminum could lower the short-term memory ability of rats.”
SOURCE: Li M, et al. (2015). Pathologic changes and effect on the learning and memory ability in rats exposed to fluoride and aluminum. Toxicology Research 4:1366-73.

“Our results suggest that exposure of rats to Na-F has detrimental effects on the brain as reflected in diminished learning and memory.
SOURCE: Shalini B, Sharma JD. (2015). Beneficial effects of emblica officinalis on fluoride-induced toxicity on brain biochemical indexes and learning-memory in rats. Toxicology International 22(1):35-9.

“NaF induced motor incoordination, depression, and memory impairment, and these were prevented by coadministration of BM in mice.”
SOURCE: Balaji B, et al. (2015). Evaluation of standardized Bacopa monniera extract in sodium fluoride induced behavioural, biochemical, and histopathological alterations in mice. Toxicology and Industrial Health. 31(1):18-30.

“Results showed that in rats with chronic fluorosis compared with the controls, locomotor activity and exploratory behavior were significantly or very significantly suppressed, spatial learning and memory ability were significantly declined;. synaptic membrane fluidity and the protein level of PSD-95 of hippocampus were greatly decreased.”
SOURCE: Zhang Z, et al. (2015). [The synaptic mechanism of learning-memory injury induced by chronic fluorosis in brain]. Journal of Zhejiang Normal University (Published online: January 21, 2015).

“Conclusion: Neurobehavioral development as well as learning and memory ability in rat offspring are impaired by long-term exposure to fluoride and Vit E has exhibited an antagonistic effect to the toxicities of fluoride.”
SOURCE: Dong YT, et al. (2014). [Effects of chronic fluorosis on neurobehavioral development in offspring of rats and antagonistic effect of Vitamin E]. Chinese Journal of Endemiology 33(2):125-28.

“The behavior tests showed that 56 days of fluoride and lead administration significantly reduced the vertical activity and lowered the memory ability of mice..”
SOURCE: Niu R, et al. (2014). Proteomic analysis of hippocampus in offspring male mice exposed to fluoride and lead. Biological Trace Element Research 162(1-3):227-33.

“These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and mGluR5 expression in cortex and hippocampus.”
SOURCE: Jiang S, et al. (2014). Fluoride and Arsenic Exposure Impairs Learning and Memory and Decreases mGluR5 Expression in the Hippocampus and Cortex in Rats. PLoS One. 2014 Apr 23;9(4):e96041.

“Taken together, these results indicated that long-term fluoride administration can enhance the excitement of male mice, impair recognition memory, and upregulate VAMP-2 mRNA expression, which are involved in the adverse effects of fluoride on the object recognition memory of nervous system.”
SOURCE: Han H, et al. (2014). Effects of chronic fluoride exposure on object recognition memory and mRNA expression of SNARE complex in hippocampus of male mice. Biological Trace Element Research 158(1):58-64.

“Collectively, our data indicate that developmental exposure to NaF induces cognitive deficits and anxiety-depression-like behaviors in mice.”
SOURCE: Liu F, et al. (2014). Fluoride exposure during development affects both cognition and emotion in mice. Physiology & Behavior 124:1-7.

“We found that NaF treatment impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride
may be closely associated with low glucose utilization and neurodegenerative changes.”
SOURCE: Jiang C, et al. (2014). Low Glucose Utilization and Neurodegenerative Changes Caused by Sodium Fluoride Exposure in Rat’s Developmental Brain. Neuromolecular Medicine 16(1):94-105.

“The results of the present study are in agreementwith studies published in the field of fluoride research, showing that chronic exposure to fluoride leads to learningand memory deficits.”
SOURCE: Raghu J, et al. (2013). The ameliorative effect of ascorbic acid and Ginkgo biloba on learning and memory deficits associated with fluoride exposure. Interdisciplinary Toxicology 6(4):217-221.

“The Y-maze test has been widely used to evaluate cognitive abilities. The test involves recording the CRT [correct reaction time]. . . .  The CRT of the NaF group on the 9th day decreased significantly (p<0.01, vs. control group). The CRT of the rats treated with EGb [ginko bilboa extract] significantly increased compared to the rats that received fluoride and saline (p<0.01). After 2 weeks, the Y-maze test was performed again to test the CRT. As showed in Fig. 1c, the CRT of the EGb group was significantly more than that of the NaF group (p<0.01). This result suggested that EGb could improve learning and memory impairment induced by chronic fluoride exposure in rats.”
SOURCE: Zhang C, et al. (2013). The analog of ginkgo biloba extract 761 is a protective factor of cognitive impairment induced by chronic fluorosis. Biological Trace Element Research 153:229-36.

“The learning and memory abilities were lower in chronic fluorosis groups, particularly in medium and high fluorosis groups (P <0.05 or P <0.01) than in the normal group. Compared with the normal group, marked morphological changes were observed in the hippocampal cells in high fluorosis group. Conclusion: The rat model has a strong resemblance in cognitive dysfunction caused by chronic fluorosis to that in population of high fluorosis areas . . . .”
SOURCE: Chen H, Deng G. (2012). [The establishment and assessment of animal model of chronic fluorosis-induced cognitive dysfunction in rats]. Acta Academiae Medicinae Xuzhou 31(5):319-22.

“In this study F-toxicated animals took more time (seconds) to reach the goal area (latency) and committed more number of errors during the criteria leading to a less number of correct choices (performance), subsequently more number of sessions were conducted to learn the task (acquisition) in T maze test. This impaired spatial memory performance might be due to F accumulation (retention) in brain areas especially in hippocampus, which triggered oxidative stress to higher fold contributing to cognitive deficits.”
SOURCE: Basha PM, Sujitha NS (2012). Combined impact of exercise and temperature in learning and memory performance of fluoride toxicated rats. Biological Trace Element Research 150:306-13.

“The results demonstrate that fluoride exposure may develop an adverse effect on the learning capacity of rats, this may be caused by monoamine neurotransmitters levels alteration.”
SOURCE: Zhu Y, et al. (2012). Effects of fluoride exposure on performance in water labyrinth and monoamine neurotransmitters of rats. Journal of Xinjiang Medical University 35(3):330-33.

“The results showed that NaF impairs open-field habituation and increases noradrenaline (NA) and serotonin (5-HT) in the striatum, hippocampus and neocortex. Dopamine (DA) increase was restricted to the striatum. Short-term NaF withdrawal did not reverse these NaF-induced changes, and both NaF treatments led to a mild fluorosis in rat incisors. No treatment effect was seen in body weight or fluid/water consumption. These results indicate that sodium fluoride induces memory impairment that outlasts short-term NaF withdrawal (2 weeks) and may be associated with NA and 5-HT increases in discrete brain regions.”
SOURCE: Pereira M, et al. (2011). Memory impairment induced by sodium fluoride is associated with changes in brain monoamine levels. Neurotoxicity Research 19(1):55-62.

“In the T-maze experiments, the fluoride-treated group showed poor acquisition and retention and higher latency when compared with the control. The alterations were more profound in the third generation when compared with the first- and second-generation fluoride-treated group. Changes in the thyroid hormone levels in the present study might have imbalanced the oxidant/antioxidant system, which further led to a reduction in learning memory ability. Hence, presence of generational or cumulative effects of fluoride on the development of the offspring when it is ingested continuously through multiple generations is evident from the present study.”
SOURCE: Basha PM, et al. (2011). Fluoride toxicity and status of serum thyroid hormones, brain histopathology, and learning memory in rats: a multigenerational assessment. Biological Trace Element Research 144(1-3):1083-94.

“The results showed that in the rat offspring exposed to higher fluoride as compared to controls, the learning and memory ability declined; the cholinesterase activities in the brains were inhibited; the protein levels of alpha3, alpha4 and alpha7 nAChR subunits were decreased which showed certain significant correlations with the declined learning and memory ability; and the mRNA levels of alpha3 and alpha4 nAChRs were decreased, whereas the alpha7 mRNA increased.”
SOURCE: Gui CZ, et al. (2010). Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis. Neurotoxicology & Teratology 32(5):536-41.

“Our results suggest that exposure of rats to Na-F in high doses for long duration has detrimental effects on the brain as reflected in diminished learning and memory.”
SOURCE: El-Lethey H, et al. (2010). Neurobehavioral toxicity produced by sodium fluoride in drinking water of laboratory rats. Journal of American Science 6:54-63

“The results showed that as compared with controls, the learning and memory capacity in the rats with fluorosis was decreased. The protein expressions of alpha7 and alpha4 nAChR subunits in rat brains with fluorosis were decreased by 35% and 33%, whereas the corresponding receptor subunit mRNAs did not exhibit any changes. The increases of phospho- and total-ERK1/2 as well as phospho-MEK1/2 at the protein levels were found in the brains of rats with fluorosis as compared to controls, and no difference of ERK1/2 mRNA was found. In addition, the activation rate of phospho-ERK1/2 was decreased in the brains affected with fluorosis. The modifications of nAChRs and ERK1/2 pathway might be connected with the molecular mechanisms in the decreased capacity of learning and memory of the rats with fluorosis.”
SOURCE: Liu YJ, et al. (2010). Alterations of nAChRs and ERK1/2 in the brains of rats with chronic fluorosis and their connections with the decreased capacity of learning and memory. Toxicology Letters 192(3):324-9.

“Conclusion: Brick tea fluoride and aluminum poisoning of rats obstructs learning and memory and brain tissue SS expression decreases.”
SOURCE: Bai J, et al. (2010). Learning and memory obstacles and changes in brain tissue growth inhibitors from brick tea fluoride and aluminum poisoning of rats. Chinese Journal of Control of Endemic Diseases 25(3):161-63.

“The aim of this research was to study the mechanism of the decreased learning and memory of rats with chronic fluorosis. Compared with controls, decreased learning and memory ability, lower levels of total antioxidant capacity (TAOC), and increased content of malondialdehyde (MDA) in brain tissues were observed in both male and female young adult rats after 6 months with either 5 or 50 mg NaF/L in their drinking water. . . . The results indicate that the reduced learning capacity and memory ability of rats induced by F may be connected with increased oxidative stress and diminished cholinergic nervous system responses.”
SOURCE: Gao Q, et al. (2009). Decreased learning and memory ability in rats with fluorosis: increased oxidative stress and reduced cholinesterase activity in the brain. Fluoride 42(4):277-85.

“Objective: To explore the effects of fluoride in learning and memory changes and the antagonism of selenium by way of animal experiments. . . . Conclusion: Fluoride can damage the learning and memory function, and selenium may [mitigate these] effects.”
SOURCE: Gao Y, et al. (2009). [Effects of learning and memory of fluoride and the antagonism of selenium in rat.] [Study in Chinese] Studies of Trace Elements and Health 26(2).

“Conclusion: Passing through placental barriers, the fluorine exposure of pregnant rats can have a certain effect on the learning and memory capabilities of baby rats, and it may be related to SOD activity and MDA content in the brain.”
SOURCE: Zhang J, et al. (2009). The effect of fluorine exposure of pregnant rats on the learning and memory capabilities of baby rats. Chinese Journal of Public Health 25(11):1347-48.

“Results showed that the learning abilities and hippocampus glutamate levels were significantly decreased by [fluoride] and [lead] individually and the combined interaction of [fluoride] and [lead]. . . . These findings suggested that alteration of hippocampus glutamate by [fluoride] and/or [lead] may in part reduce learning ability in rats.”
SOURCE: Niu R, et al. (2009). Decreased learning ability and low hippocampus glutamate in offspring rats exposed to fluoride and lead. Environmental Toxicology & Pharmacology 28(2):254-8.

“Overall, these results suggest that moderate intoxication with sodium fluoride has potentially deleterious effects on learning and memory.”
SOURCE: Chioca LR, et al. (2008). Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats. European Journal of Pharmacology 579(1-3):196-201.

“These findings indicate that F and/or Pb can influence spontaneous behaviors and lower the learning ability of rats before the appearance of dental lesions.”
SOURCE: Niu R, et al. (2008). Effects of fluoride and lead on locomotor behavior and expression of nissl body in brain of adult rats. Fluoride 41(4):276-82.

“Our data are in agreement with recent findings showing a learning-memory behavior impairment in mice after drinking different concentration of sodium fluoride.”
SOURCE: Bera I, et al. (2007). Neurofunctional effects of developmental sodium fluoride exposure in rats. European Review for Medical and Pharmacological Sciences 11(4):211-24.

“In conclusion, excessive intakes of [fluoride] and [arsenic] or both together affect brain biochemical indexes and depress the learning-memory ability of rats.”
SOURCE: Wu C, et al. (2006). Effects of high fluoride and arsenic on brain biochemical indexes and learning-memory in rats. Fluoride 39(2):274-79.

“Conclusion: The results indicate that chronic fluorosis has a significant effect on rat learning and memory behavior.”
SOURCE: Wang G, et al. (2006). Effect of different doses of chronic exposure of fluoride on rat learning and memory behavior. Studies of Trace Elements & Health 23(2):1-2.

“Objective: To study the effect of high level fluoride and low level iodine on learning-memory in offspring rats and possible mechanism. . . . Results: Compared with control rats, error number (EN1) and (EN2) of the experimental offspring rats increased significantly (P0.05). Sustaining time (ST) reduced obviously (P0.05). EN1 and EN2 of the experimental rats in the group of high fluoride and low iodine were the highest in all groups (P0.05)..”
SOURCE:  Hong J, et al. (2005). [Effects of high fluoride and low iodine on learning-memory and TchE of brain in offspring rats]. China Preventive Medicine. Available online at: http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYC200506000.htm

“In comparison with control rats, the learning and memory ability of the offspring rats was depressed by high fluoride, low iodine, or the combination of high fluoride and low iodine.”
SOURCE: Wang J, et al. (2004). Effects of high fluoride and low iodine on biochemical indexes of the brain and learning-memory of offspring rats. Fluoride 37(4): 201-208.

“The learning memory abilities of rats in high F group, high I-high F group, and low I-high F group were significantly lower than control group, while the learning memory abilities of rats given proper concentration I and Se increased significantly.”
SOURCE: Shen X, et al. (2004). [Effect of iodine and selenium on learning memory impairment induced by fluorosis and blood biochemical criterion of rats]. Occupation & Health 20(1):6-8.

“Fluoride intoxicated animals also performed poorly in motor co-ordination tests and maze tests. Inability to perform well increased with higher fluoride concentration in drinking water.”
SOURCE: Bhatnagar M, et al. (2002). Neurotoxicity of fluoride: neurodegeneration in hippocampus of female mice. Indian Journal of Experimental Biology 40: 546-54.

“Conclusion: Fluorosis of mice caused significant harm to some open field behavior and learning capabilities of mice, there was a certain effect on brain SOD activity, and this effect may have a certain relation to the fluoride concentration.”
SOURCE: Xu X, et al. (2001). Effect of fluorosis on mice learning and memory behaviors and brain SOD activity and MDA content. China Public Health 17(1):8-10.

“The main results showed that the learning capability of mice drinking higher concentration of fluoride presented remarkable deterioration.”
SOURCE: Zhang Z, et al. (2001). Effects of selenium on the damage of learning-memory ability of mice induced by fluoride. [Article in Chinese] Journal of Hygiene Research 30(3):144-146.

“Learning and memory abilities of high-fluoride exposed groups were significantly lower than that of the control group, while the brain ChE activities of high-fluoride exposed groups were significantly higher. Conclusions: High fluoride concentration in drinking water can decrease the cerebral functions of mice. Fluoride is a neurotoxicant.”
SOURCE: Sun ZR, et al. (2000). Effects of high fluoride drinking water on the cerebral functions of mice. Chinese Journal of Epidemiology 19: 262-263.

“The main results are as follows: the learning ability of mice drinking high concentration of fluoride presented remarkable deterioration… The results suggested that the impairment on the learning capability induced by fluorosis may be closely related with the pathological changes of synaptic structure in the brain of mice.”
SOURCE: Zhang Z, et al. (1999). Effect of fluoride exposure on synaptic structure of brain areas related to learning-memory in mice. Journal of Hygiene Research 28(4):210-2. (Republished in Fluoride 2008; 41:139-43.

“Cognitive function: The results of water maze testing showed that the pups exposed to fluoride during the fetal development phase make more mistakes before discovering the correct path, and in the 25 mg/L group the increase was significant.”
SOURCE: Wu N, et al. (1995). Research on the abnormal behavior of rats exposed to fluoride. Chinese Journal of Control of Endemic Diseases 14(5):271 (published in Fluoride 2008;41(2):129-133.

See also:

“This is the first laboratory study to demonstrate that CNS functional output is vulnerable to fluoride, that the effects on behavior depend on the age at exposure and that fluoride accumulates in brain tissues. Experience with other developmental neurotoxicants prompts expectations that changes in behavioral function will be comparable across species, especially humans and rats. Of course behaviors per se do not extrapolate, but a generic behavioral pattern disruption as found in this rat study can be indicative of a potential for motor dysfunction, IQ deficits, and/or learning disabilities in humans.”
SOURCE: Mullenix P, et al. (1995). Neurotoxicity of Sodium Fluoride in Rats. Neurotoxicology and Teratology 17(2):169-177.