Abstract
The effect of sodium fluoride therapy on iliac trabecular bone has been studied in 15 patients with primary osteoporosis by comparing bone biopsies taken before and after two years of treatment. A marked increase in bone volume (43%) was observed, which was attributable to an increase in trabecular thickness (46%) rather than their number. Because the trabecular bone surface, the trabecular number, the bone volume/trabecular width ratio, and the trabecular terminus number do not change significantly after fluoride treatment, we conclude that fluoride does not induce the de novo generation of trabeculae, nor does it restore trabecular connectivity despite the restoration of bone mass. These data suggest that the restoration of skeletal mass with fluoride may not lead to a comparable decrease in the risk of future fracture.
-
-
Effects of fluoride treatment on bone strength
Bone mass and architecture in appendicular and most axial sites is controlled primarily by the tissue-loading history. We introduce a conceptual framework for understanding how fluoride treatment alters this control and can cause systemic increases in bone mass. Due to possible adverse influences of fluoride on the mineralized tissue physical
-
Radiological spectrum of endemic fluorosis: relationship with calcium intake
Skeletal fluorosis continues to be endemic in many parts of India. Osteosclerosis and interosseous membrane calcification have long been regarded as hallmarks of this disease. Our study showed in addition a wide variety of radiological patterns: coarse trabecular pattern, axial osteosclerosis with distal osteopenia and diffuse osteopenia. Subjects with osteopenic changes had
-
The effect of water fluoridation on the bone mineral density of young women
INTRODUCTION: Osteogenic effects of therapeutic fluoride have been reported; however, the impact of exposure to low level water fluoridation on bone density is not clear. We investigated the effect of long-term exposure to fluoridated water from growth to young adulthood on bone mineral density (BMD). METHODS: BMD was measured in
-
Fluoride exposure may accelerate the osteoporotic change in postmenopausal women: animal model of fluoride-induced osteoporosis
Carbonic anhydrase is a key enzyme for initiating the crystal nucleation, seen as “the central dark line” in the crystal structure in calcified hard tissues such as tooth enamel, dentin and bone. Both estrogen deficiency and fluoride exposure adversely affected the synthesis of this enzyme in the calcifying hard tissues.
-
Osteoporosis Treatments Affect Bone Matrix Maturation in a Rat Model of Induced Cortical Remodeling.
The example of sodium fluoride (NaF) clearly demonstrates an instance where increasing bone mass while altering maturation can negatively affect drug efficacy. NaF was a promising osteoporosis treatment because it increased BMD.5 However, it became evident that the treated patients were at increased risk of fracture,6, 7 which was later
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
Related FAN Content :
-