Abstract
The healthy, adult male rats (Rattus norvegicus) were treated with fluoride water (F.W.+5.8 ppm), F.W.+ ascorbic acid and F.W. + vitamins (C, D) and Ca+2 for 60 days. Fluoride water ingestion to rats for 60 days resulted in significant reduction of seminal vesicle weight, sperm motility and sperm density of cauda epididymis and testis as compared to control values. The level of testosterone diminished significantly leading to reduced fertility and numbers of litters. The total erythrocytes number, hemoglobin and haematocrit value declined. The concentration of protein, fructose and ascorbic acid decreased, whereas, the cholesterol concentration of testis and enzyme activity of acid phosphatase increased significantly (P<0.001) as compared to control value. The exogenous feeding of ascorbic acid and vitamin C, vitamin D and calcium along with fluoride water for 60 days caused recovery in all altered parameters studied including circulating level of testosterone, blood physiology, sperm function and fertility. The data suggest that ascorbic acid and vitamin C, vitamin D and Ca +2 treatment can play a prophylactic role to maintain normal physiology in fluoride toxicity.
-
-
Evaluation of vitamin E and calcium effects on fluoride toxicity-induced fertility impairment
Chronic fluoride (Fl) toxicity is a serious public health problem globally where drinking water contains more than 1 ppm of Fl. Sodium fluoride (NaF) produced male reproductive system toxicity. The aim of the present study was to evaluate the amelioration of Fl toxicity-induced fertility impairment by vitamin E and calcium
-
Amelioration of fluoride toxicity by vitamins and calcium on reproductive organs of female rat
Normal female rats of Wistar strain (Rattus norvegicus) weighing between 150–200 g were treated with fluoride (Fl) contaminated drinking water (FW, 5.8 ppm), vitamin C (6 mg) and vitamin C (6 mg) + D (6 mg once a week) + calcium (6 mg) for 30 days. Fl water treatment to
-
Reversal of fluoride-induced alteration in cauda epididymal spermatozoa and fertility impairment in male mice
The effects of sodium fluoride (NaF) ingestion (10 mg NaF/kg body weight) and the possible therapeutic effects of ascorbic acid (AA, 15 mg/animal/day) and/or calcium phosphate (Ca, 25 mg/animal/day) on the reproductive functions and fertility of male mice were investigated. NaF-ingestion brought about a significant decline in sperm acrosomal acrosin
-
Amelioration of fluoride toxicity in some accessory reproductive glands and spermatozoa of rat
Sodium fluoride (NaF) at a dose of 10 mg/kg body weight was administered orally to male rats (Rettus norvegicus) daily for 30 and 50 days to evaluate the effect of the physiology of some sex accessory glands and sperm functions. The effects of withdrawal upon cessation of NaF ingestion, and
-
Vitamin C and E supplementation can ameliorate NaF mediated testicular and spermatozoal DNA damages in adult Wistar rats.
Objective: Present study was designed to explore the efficacy of vitamin C and E (VC&VE) against fluoride mediated testicular, epididymal and spermatozoal anomalies. Materials and methods: Thirty two adult Wistar rats were divided into four groups. Group-I was control; Group-II received sodium fluoride (NaF) at 15 mg/kg/day
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Fluoride Exposure Increases Metabolic Requirement for Calcium & Vitamin D
It is well known that individuals with nutrient deficiencies are more susceptible to fluoride toxicity, including fluoride's bone effects. As discussed in the following studies, fluoride increases the skeleton's need for calcium (and vitamin D) by increasing the amount of unmineralized tissue (osteoid) in the bone. When insufficient calcium and
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
Related FAN Content :
-