Abstract
Objective: To probe into the changing regularity of sclerotic skeletal fluorosis after patients changed to drink low-fluorine water for the long term. Methods: Study subjects were patients with sclerotic skeletal fluorosis who changed to drink low-fluorine water 16–25 years ago, and their sclerotic skeletal fluorosis had been proven by bone X-ray at the beginning of or prior to this change; their anteroposterior X-ray films of the pelvis, right forearm and right lower limb were taken for comparison and analysis. Results: The bone substances of all subjects improved remarkably after they changed to drink low-fluorine water for the long term, and 21.47% of them resumed a normal state. The morphology of bone trabecula was not improved for 18.75%–85.75% of cases, and dense bone trabecula became osteoporotic for most cases. The ossification of peri-osseous soft tissues worsened for 73.33% of cases and the degenerative changes of bone joints worsened for 80%. Conclusion: The bone substances of sclerotic skeletal fluorosis can improve remarkably after patients change to drink low-fluorine water for the long term, and so a portion of patients may resume the normal state. Two consequential effects of sclerotic skeletal fluorosis are osteoporosis and exacerbation of ossification of peri-osseous soft tissues.
-
-
Health effects of selected chemicals. 3. Cryolite (sodium aluminium fluoride)
Cryolite occurs in the nature as monoclinic crystals or in synthetic form as an amorphous powder. The natural form may be coloured reddish or brown or even black. Cryolite has a melting point >1 000 degrees C and its main use is in the production of aluminum where it forms
-
A Brief and Critical Review of Chronic Fluoride Poisoning (Fluorosis) in Domesticated Water Buff aloes (Bubalus bubalis) in India: Focus on its Impact on Rural Economy.
In the rural areas of India, fl uoridated drinking water, industrial fluoride pollution and fluoride rich feed phosphate supplements are the major sources of fluoride exposure for domesticated water buffaloes (Bubalus bubalis). However, the fluoridated drinking groundwater is the commonest and principal source of fluoride exposure for these ruminants. Chronic
-
Mus musculus bone fluoride concentration as a useful biomarker for risk assessment of skeletal fluorosis in volcanic areas.
Fluoride is often found in elevated concentrations in volcanic areas due to the release of magmatic fluorine as hydrogen fluorine through volcanic degassing. The exposure to high levels of fluoride can affect the processes of bone formation and resorption causing skeletal fluorosis, a pathology that can easily be mistaken for
-
[Two cases of skeletal fluorosis in the hand].
Skeletal fluorosis is well known, particularly in the spine, pelvis and forearm. However, the hand may also be involved. The authors report two cases of this site in endemic areas in Senegal, after ingestion of large amounts of fluoride in the water. Fluorosis consisted of deforming metacarpal and phalangeal osteoperiotitis in one case
-
Endemic chronic fluoride toxicity and dietary calcium deficiency interaction syndromes of metabolic bone disease and deformities in India: year 2000
Epidemiological studies during 1963-1997 were conducted in 45,725 children exposed to high intake of endemic fluoride in the drinking water since their birth. Children with adequate (dietary calcium > 800 mg/d) and inadequate (dietary calcium < 300 mg/d) calcium nutrition and with comparable intakes of fluoride (mean 9.5 +/- 1.9
Related Studies :
-
-
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & DISH (Diffuse Idiopathic Skeletal Hyperostosis)
Among individuals with skeletal fluorosis, the fluoride-induced changes to the spine, and the accompanying symptoms, can bear a close resemblance to DISH (Forestier's Disease). Some authors report that skeletal fluorosis can so closely resemble that DISH that the only way to distinguish the two would be to conduct an invasive bone biopsy. No studies have ever been conducted to determine what role, if any, fluoride plays in the development of DISH.
-
X-Ray Diagnosis of Skeletal Fluorosis
In 1937, Kaj Roholm published his seminal study Fluorine Intoxication in which he described three phases of bone changes that occur in skeletal fluorosis. (See below). These three phases, which are detectable by x-ray, have been widely used as a diagnostic guide for detecting the disease. They describe an osteosclerotic bone disease that develops first in the axial skeleton (the spine, pelvis, and ribs), and ultimately results in extensive calcification of ligaments and cartilage, as well as bony outgrowths such as osteophytes and exostoses. Subsequent research has found, however, that x-rays provide a very crude measure for diagnosing fluorosis since the disease can cause symptoms and effects (e.g., osteoarthritis) before, and in the absence of, radiologicaly detectable osteosclerosis in the spine.
Related FAN Content :
-