Abstract
The phenotype frequency distributions of several classical blood genetic markers and dermatoglyphic characters were analyzed in workers of Siberian aluminum plants who had occupational fluorosis. Comparison with healthy workers revealed significant differences in frequencies of several markers. Phenotypes B (AB0), D (Rh), MN (MN), P1 (P), Le a (Lewis), Gc 2-1, Cx (on both hands), Th/I+ (on the left hand), C3, and C4 (HLA) were associated with higher risk of occupational fluorosis.
-
-
Modifying role of GSTP1 polymorphism on the association between tea fluoride exposure and the brick-tea type fluorosis
BACKGROUND: Brick tea type fluorosis is a public health concern in the north-west area of China. The association between SNPs of genes influencing bone mass and fluorosis has attracted attention, but the association of SNPs with the risk of brick-tea type of fluorosis has not been reported. OBJECTIVE: To investigate the
-
Association between vitamin D receptor gene FokI polymorphism and skeletal fluorosis of the brick-tea type fluorosis: a cross sectional, case control study
Background Brick-tea type fluorosis is a public health concern in the north west area of China. The vitamin D receptor (VDR)-FokI polymorphism is considered to be a regulator of bone metabolism and calcium resorption. However, the association of VDR-FokI polymorphism with the risk of brick-tea type fluorosis has not been
-
[Genetic factors predisposing to occupational fluorosis].
Having analyzed a total amount of all systems, the authors specified the most important genetic markers predisposing to chronic flour intoxication: the patients demonstrated higher frequency of ACP1*A and PGM1*1-alleles, phenotypes of acid phosphatase AA, of phosphoglucomutase 1+1+ and 2+2+, of dry cerumen consistence--d. The results could help to improve
-
Comparison of two village primary schools in northern Tanzania affected by fluorosis
High fluoride levels in drinking water sources are a problem throughout the East African Rift Valley and can lead to dental fluorosis (DF) and skeletal fluorosis (SF) in exposed local populations. Two villages in the Hai District of northern Tanzania in which fluoride has been identified as a problem were
-
Fluoride's effects on the formation of teeth and bones, and the influence of genetics.
Fluorides are present in the environment. Excessive systemic exposure to fluorides can lead to disturbances of bone homeostasis (skeletal fluorosis) and enamel development (dental/enamel fluorosis). The severity of dental fluorosis is also dependent upon fluoride dose and the timing and duration of fluoride exposure. Fluoride's actions on bone cells predominate
Related Studies :
-
-
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Fluoridation, Dialysis & Osteomalacia
In the 1960s and 1970s, doctors discovered that patients receiving kidney dialysis were accumulating very high levels of fluoride in their bones and blood, and that this exposure was associated with severe forms of osteomalacia, a bone-softening disease that leads to weak bones and often excruciating bone pain. Based on
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
Related FAN Content :
-