Abstract
In a 68-year-old man with a painful syndrome of the lower extremities which began at the age of 64 years, workup revealed a generalized osteopathy with sclerosis of the axial skeleton and osteopenia at the extremities associated with pathologic fractures. The occupational history showed exposure to several synthetics such as vinyl chloride, polyethylene, delrine and polyamides over 30 years. However, a presumptive connection between the skeletal disorder and the occupational exposure could not initially be substantiated. In a later analysis of the bone biopsies from 1991, a significant increase of fluorine in the tibia and fibula of the patient was detected and thus the diagnosis of industrial fluorosis established. The fluorine presumably originated from the workup of polytetrafluorethylene plates. A detailed analysis of the workplace is ongoing. The fluorosis may obviously appear as a variable skeletal disease. The clinical picture of fluorosis is incompletely described in most of the German textbooks. It calls for an extended description of the X-ray findings associated with fluorosis and a new definition of the disease.
-
-
Bone mineral structure after six years fluoride treatment investigated by backscattered electron imaging (BSEI) and small angle x-ray scattering (SAXS): a case report
NaF, a bone formation stimulating agent, is used for the treatment of osteoporosis. Controversy exists concerning the quality of the newly formed bone and the antifracture effectiveness. We report about a 70 years old woman, who had received 50 mg NaF/d for about 6 years. Calcium or Vit D supplements
-
Total knee arthroplasty in a patient with skeletal fluorosis
Published reports on patients with skeletal fluorosis undergoing total knee arthroplasty are rare. Skeletal fluorosis is a chronic condition that occurs secondary to the ingestion of food and water that contain high levels of fluoride. Although fluorosis may be described as osteosclerotic and marble-like in appearance, features may also include
-
Comparison of rheumatoid (ankylosing) spondylitis and crippling fluorosis
(1) Fluoride concentrations were determined for autopsy samples of rib, sacrum, ilium, vertebra, adhering soft tissue, and rib marrow from a patient suffering from rheumatoid (ankylosing) spondylitis of 10 years’ duration. The fluoride concentrations were not increased above normal levels. In this case, the increased bone density seen in this
-
X-ray changes in the forearm and crus of residents of areas in Jilin Province with varying drinking water fluoride concentrations
GOAL: To understand the characteristics of forearm and crus X-rays of residents from areas with varying concentrations of fluoride in their drinking water, providing evidence for diagnosis of osteofluorosis. METHOD: Using quantificational epidemiological methods, a total of 15 villages from Qianan and Nonan Counties of Jilin Province were selected as the
-
X-Ray analysis of 80 patients with severe endemic fluorosis caused by coal burning
Radiographs of 80 patients with severe endemic fluorosis of coal-burning type [CBEF] - 49 males and 31 females aged 30 to 70 years - were analysed to examine the changes to the bone substance, peripheral structure of bone, and joints. The changes to bone substance were: 1) osteosclerosis type, 62
Related Studies :
-
-
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
-
Fluoride & DISH (Diffuse Idiopathic Skeletal Hyperostosis)
Among individuals with skeletal fluorosis, the fluoride-induced changes to the spine, and the accompanying symptoms, can bear a close resemblance to DISH (Forestier's Disease). Some authors report that skeletal fluorosis can so closely resemble that DISH that the only way to distinguish the two would be to conduct an invasive bone biopsy. No studies have ever been conducted to determine what role, if any, fluoride plays in the development of DISH.
Related FAN Content :
-