Abstract
Objective To study the effect of high level fluoride and low level iodine on learning-memory in offspring rats and possible mechanism.
Methods Thirty-two Wistar rats were randomly divided into four groups each of eight (female:male=(3:1).) The rats were treated with high fluoride (100 and 150 mg NaF/L), low iodine (0.0855 mg/kg), or both high fluoride (100 and 150 mg NaF/L) and low iodine (0.0855 mg/kg) respectively.
Results Compared with control rats,error number (EN1) and (EN2) of the experimental offspring rats increased significantly (P0.05). Sustaining time (ST) reduced obviously (P0.05). EN1 and EN2 of the experimental rats in the group of high fluoride and low iodine were the highest in all groups (P0.05). Acetylcholinesterase (TchE) activity in the group of high fluoride and low iodine decreased significantly at 30,60 and 90 days (P0.01).
Conclusion TchE activity of brain by high fluoride and low iodine may be an important mechanism to affect learning-memory ability.
-
-
Effects of high fluoride and arsenic on brain biochemical indexes and learning-memory in rats
Nine-six Wistar rats were randomly divided into four groups of 24 rats in each group (female:male = 1:1). Over a period up to 90 days, with one untreated group as controls, the other three groups were administered, respectively, high fluoride (100 mg NaF/L), high arsenic (50 mg As2O3/L), or both
-
A Scoping Review of Iodine and Fluoride in Pregnancy in Relation to Maternal Thyroid Function and Offspring Neurodevelopment
Iodine (I), an essential nutrient, is important for thyroid function and therefore growth and development. Fluoride (F), also an essential nutrient, strengthens bones and teeth, and prevents childhood dental caries. Both severe and mild-to-moderate I deficiency and high F exposure during development are associated to decreased intelligence quotient with recent
-
Proteomic analysis of brain proteins of rats exposed to high fluoride and low iodine.
Epidemiological investigations reveal that high fluoride and low iodine have strong adverse effects on the intelligence quotient (IQ) of children. Studies also report that in some high fluoride areas, iodine deficiency also exists, especially in China. Here, with the proteomic techniques, we first report on the proteomic changes in brain
-
A correlation between serum vitamin, acetylcholinesterase activity and IQ in children with excessive endemic fluoride exposure in Rajasthan, India
Fluoride is widely distributed in nature and a direct source of adverse health effects in human populations. Fluoride poisoning attributed by long-term exposure to high levels of fluoride [is] called fluorosis. The present study was carried out among 9-14 years old school children of Dausa district, Rajasthan India. The subjects
-
Gut microbiota perturbations and neurodevelopmental impacts in offspring rats concurrently exposure to inorganic arsenic and fluoride.
Many “hot spot” geographic areas across the world with drinking water co-contaminated with inorganic arsenic (iAs) and fluoride (F-), two of the most common natural contaminants in drinking water. Both iAs and F- are known neurotoxins and affect neurodevelopment of children. However, very few studies have investigated the neurodevelopmental effects
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
-
Unheeded Warnings: Government Health Authorities Ignore Fluoride Risk for Kidney Patients
Despite the well known fact that individuals with kidney disease are at much higher risk of fluoride toxicity than the general population, there has yet to be any attempt in the United States, or any other country that practices mass-scale water fluoridation to determine the prevalence of fluoride-related effects (e.g.,
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride Exposure Increases Metabolic Requirement for Calcium & Vitamin D
It is well known that individuals with nutrient deficiencies are more susceptible to fluoride toxicity, including fluoride's bone effects. As discussed in the following studies, fluoride increases the skeleton's need for calcium (and vitamin D) by increasing the amount of unmineralized tissue (osteoid) in the bone. When insufficient calcium and
Related FAN Content :
-