Abstract
The purpose of this study was to investigate whether fluoride (F) induces cardiotoxicity in rats and to discuss its underlying mechanisms by detecting morphological change, enzyme activity of oxidative stress, and the expression of Bcl-2 family protein. With increasing dosages of F, obvious pathological changes occurred in the myocardial tissue of rats with a trend to increased expression in the cardiomyocytes of Bax and a trend to decreased expression of Bcl-2. Excessive fluoride caused peroxidation damage with inhibition of the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in myocardial tissue leading to a rise of malonaldehyde (MDA) content. These results indicate that a molecular basis for the cardiac damage by fluoride involves the Bax/ Bcl-2 signalling pathway.
-
-
Chronic fluoride toxicity and myocardial damage: antioxidant offered protection in second generation rats
This experiment was designed to investigate the extent of peroxidative changes and histological alterations in the myocardium of rats exposed to high fluoride for two generations, in addition to ameliorative role of selenium and vitamin E on the above indices. Adult albino Wistar rats were given fluoride through drinking water
-
Rutin potentially attenuates fluoride induced oxidative stress mediated cardiotoxicity, blood toxicity and dyslipidemia in rats
The present study was undertaken to evaluate cardio protective effect of rutin against sodium fluoride-induced oxidative stress mediated cardio toxicity and blood toxicity. Cardiac injury was induced by daily administration of sodium fluoride 600ppm in distilled water for 4 weeks. The animals exposed to NaF exhibited a significant increase in
-
Epigallocatechin gallate potentially attenuates fluoride induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats
The present study was undertaken to evaluate the cardioprotective role of (-)-epigallocatechin-gallate (EGCG) against Fluoride (F) induced oxidative stress mediated cardiotoxicity in rats. The animals exposed to F as sodium Fluoride (NaF) (25mg/kg BW) for 4 weeks exhibited a significant increase in the levels of cardiac troponins T and I
-
Sodium fluoride induces apoptosis in H9c2 cardiomyocytes by altering mitochondrial membrane potential and intracellular ROS level
Chronic excessive fluoride intake is known to be toxic, and effects of long-term fluorosis on different organ systems have been examined. However, there are few studies about the effects of fluorosis on cardiovascular systems. Here, we studied the fluoride-induced apoptosis in H9c2 cells and determined the underlying molecular mechanisms including
-
Effects of melatonin and epiphyseal proteins on fluoride-induced adverse changes in antioxidant status of heart, liver, and kidney of rats
Several experimental and clinical reports indicated the oxidative stress-mediated adverse changes in vital organs of human and animal in fluoride (F) toxicity. Therefore, the present study was undertaken to evaluate the therapeutic effect of buffalo (Bubalus bubalis) epiphyseal (pineal) proteins (BEP) and melatonin (MEL) against F-induced oxidative stress in heart,
Related Studies :
-
-
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
-
Fluoride & Myocardial Damage
Structural damage to the heart resulting from fluoride toxicity has been observed in numerous human and animal studies. The general features of this damage include cloudy swelling, vacuolization or vacuolar degeneration, hemorrhages, interstitial edema, fibrous necrosis, dissolution of nuclei, and thickening of the vessel walls in the heart muscle (Basha
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride, Blood Pressure and Hypertension
Individuals with blood pressure readings that exceed 140/90 are considered hypertensive. Hypertension can increase the risk of stroke, heart attack, heart failure, aortic aneurysms, and peripheral arterial disease. An association between increased fluoride in ground water and increased prevalence of hypertension has been observed, especially among adult males (Amini et
Related FAN Content :
-