Abstract
OBJECTIVES: The aim of this study was to evaluate the putative association between the presence of the COL1A2 gene A/C polymorphism and the severity of dental fluorosis in a sample exposed to high concentrations of fluoride.
METHODS: A cross-sectional study was carried out that included 80 children residing in a community with high concentrations of fluoride in the drinking water. To determine whether the presence of this polymorphism and dental fluorosis are associated, the presence of the dental fluorosis was considered to be a response variable, while fluoride concentration in water and urine was designated as independent variables. In addition, the children’s parents completed questionnaires with general information about drinking and cooking with tap water, consumption of milk and soft drinks, and other putative risk factors.
RESULTS: Individuals with the polymorphism had nonsignificant odds (OR = 2.24; 95% CI = 0.55-9.02) of having dental fluorosis at higher exposures to fluoride. This finding was similar in individuals without the polymorphism (OR = 1.65; 95% CI = 0.44-6.17).
CONCLUSIONS: The presence of polymorphism in the COL1A2 gene was not associated with the severity of dental fluorosis.
-
-
Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study
Objective: This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods: Samples from the enamel matrix in the early stages of secretion and maturation were obtained
-
Dental fluorosis and a polymorphism in the COL1A2 gene in Mexican children.
Highlights Dental fluorosis is a public health problem in the communities evaluated. The rs 412777 polymorphism in the COL1A2 gene was found in Mexican children. An association between the COL1A2 gene polymorphism and dental fluorosis was found. The genetic variant evaluated represents a risk factor to develop dental fluorosis. OBJECTIVE:
-
Evaluation of genetic polymorphisms in MMP2, MMP9 and MMP20 in Brazilian children with dental fluorosis.
Highlights MMP2, MMP9 and MMP20 were expressed in the enamel development of the animalmodels. Polymorphisms in MMP2, MMP9 and MMP2 were not associated with dental fluorosis. Afro-descendants had a higher risk of dental fluorosis than caucasian. Recent studies suggested that genetics contribute to differences in dental fluorosis (DF) susceptibility among individuals
-
Effect of dietary protein or calcium supplement on the expression of collagen I and dentine phosphoprotein of rats with dental fluorosis.
This study aims to assess the roles of dietary protein (Pr) and calcium (Ca) levels associated with excessive fluoride (F) intake and the impact of Pr, Ca, and F on expression of collagen I (COL I) and dentine phosphoprotein (DPP) in rat incisors. Seventy-two rats were randomly allotted to six
-
Possible Association Between Polymorphisms in ESR1, COL1A2, BGLAP, SPARC, VDR, and MMP2 Genes and Dental Fluorosis in a Population from an Endemic Region of West Bengal.
Dental fluorosis (DF) is the most prevalent form of fluorosis in India affecting millions of people all over the country. As estrogen receptor 1 (ESR1), collagen type 1 alpha 2 (COL1A2), bone ?-carboxyglutamic acid protein (BGLAP), secreted protein acidic and cysteine-rich (SPARC), vitamin D receptor (VDR), and matrix metallopeptidase 2
Related Studies :
-
-
-
Mechanisms by Which Fluoride Causes Dental Fluorosis Remain Unknown
When it comes to how fluoride impacts human health, no tissue in the body has been studied more than the teeth. Yet, despite over 50 years of research, the mechanism by which fluoride causes dental fluorosis (a hypo-mineralization of the enamel that results in significant staining of the teeth) is not
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Dental Fluorosis Is a "Hypo-mineralization" of Enamel
Teeth with fluorosis have an increase in porosity in the subsurface enamel ("hypomineralization"). The increased porosity of enamel found in fluorosis is a result of a fluoride-induced impairment in the clearance of proteins (amelogenins) from the developing teeth. Despite over 50 years of research, the exact mechanism by which fluoride impairs amelogin
-
"Mild" Dental Fluorosis: Perceptions & Psychological Impact
The vast majority of research has found that patients, parents, and the general public alike view mild fluorosis (TF score 3) as a significant blemish of the teeth, one that is likely to embarrass the affected child to a degree that cosmetic treatment would be warranted.
-
Racial Disparities in Dental Fluorosis
In 2005, the Centers for Disease Control published the results of a national survey of dental fluorosis conducted between 1999 and 2002. According to the CDC, black children in the United States have significantly higher rates of dental fluorosis than either white or Hispanic children. This was not the first time that black children were found to suffer higher rates of dental fluorosis. At least five other studies -- dating as far back as the 1960s -- have found black children in the United States are disproportionately impacted by dental fluorosis.
Related FAN Content :
-