Abstract
OBJECTIVE: In this study, we investigated the differential pattern of protein expression in the liver of these mice to provide insights on why they have different responses to F.
MATERIAL AND METHODS: Weanling male A/J and 129P3/J mice (n=10 from each strain) were pared and housed in metabolic cages with ad libitum access to low-F food and deionized water for 42 days. Liver proteome profiles were examined using nLC-MS/MS. Protein function was classified by GO biological process (Cluego v2.0.7 + Clupedia v1.0.8) and protein-protein interaction network was constructed (PSICQUIC, Cytoscape).
RESULTS: Most proteins with fold change were increased in A/J mice. The functional category with the highest percentage of altered genes was oxidation-reduction process (20%). Subnetwork analysis revealed that proteins with fold change interacted with Disks large homolog 4 and Calcium-activated potassium channel subunit alpha-1. A/J mice had an increase in proteins related to energy flux and oxidative stress.
CONCLUSION: This could be a possible explanation for the high susceptibility of these mice to the effects of F, since the exposure also induces oxidative stress.
-
-
Effects of fluoride on the histology, lipid metabolism, and bile acid secretion in liver of Bufo gargarizans larvae.
Highlights Fluoride triggered histopathological alterations in the liver. Fluoride induced the disruption of lipid metabolism. Fluoride resulted in impairing of antioxidant capacity. Fluoride disturbed the synthesis and secretion of bile acid. Abstract In our study, Bufo gargarizans (B. gargarizans) larvae were exposed to control, 0.5, 5, 10 and 50?mg/L of NaF from
-
[The influence of methionine and vitamin E on oxidative stress in rats’ liver exposed to sodium fluoride]
BACKGROUND: Fluorine influences many processes occurring in the organism. Controversies over the evaluation of the biological effects of this substance are due to a small difference between tolerable and toxic fluorine doses. One of the main mechanisms of the fluorine toxic action is its ability to induce oxidative stress via
-
Co-exposure to non-toxic levels of cadmium and fluoride induces hepatotoxicity in rats via triggering mitochondrial oxidative damage, apoptosis, and NF-kB pathways.
Fluoride (F) and cadmium (Cd) are two common water pollutants. There is low information about their co-exposure in low doses. So, in this study, we evaluated the combination effects of non-toxic doses of F and Cd and the possible mechanism of their combined interaction. Male rats were exposed to non-toxic
-
Environmental and Genetic Factors Influencing Kidney Toxicity.
The kidneys are a frequent target organ for toxicity from exposures to various environmental chemicals and agents. To understand the risk to human health from such exposures, it is important to consider both the underlying chemical and pathologic mechanisms and factors that may modify susceptibility to injury. Choices of exemplary
-
Sex-specific effects of fluoride and lead exposures on histology, antioxidant physiology, and immune system in the liver of zebrafish (Danio rerio).
Fluoride and Pb are both toxic to organisms; however, their combination effects and the corresponding toxic mechanisms remain unclear. In this study, male and female zebrafish (1:1) were evaluated to understand the effects of F and Pb alone and combined on growth, tissue microstructure, oxidative stress, and immune system functions
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
-
Annapolis: Water Fluoridation Linked to Death of Dialysis Patient
EVENING CAPITAL (Annapolis, Maryland) November 29, 1979 Fluoride Linked to Death by Mary Ann Kryzankowicz Staff Writer Fluoride poisoning has been definitely linked to the death of a 65-year-old kidney dialysis patient who became ill during a blood cleaning process Nov 11. State Medical Examiner Dr. (illegible) Guard has ruled that Lawrence Blake, 65, of Arundel
Related FAN Content :
-