Fluoride Action Network

Abstract

Significance

Although fluoride is plentiful in the environment and is commonly used at high concentrations in oral hygiene products, little has been known about how biological systems overcome the toxic effects of this anion. We demonstrate that a protein called FEX in many fungi is essential for cell survival in the presence of high fluoride concentrations. The protein is required for the rapid expulsion of cytoplasmic fluoride, indicating that many eukaryotic species that carry FEX genes likely avoid fluoride toxicity by purging cellular fluoride.

Abstract

Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, 18F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions.

Keywords: toxicity resistance, environmental toxin, ion transport, dual membrane topology