Abstract
The aim of the study has been to determine the influence upon the kidney, liver, and the blood prooxidative system, exercised by administration of methionine (Met), under conditions of oxidative stress induced by sodium fluoride (NaF).The experiment was carried out on Wistar FL rats (adult females) that, for 35 days, were administered distilled water, NaF or NaF with methionine (doses: 10 mg NaF/kg bw/day, 10 mg Met/kg bw/day). The influence of administered NaF and Met was examined by analyzing the concentration of malondialdehyde (MDA) in kidney, liver, erythrocytes, and blood plasma.The study confirmed the disadvantageous effect of NaF upon the antioxidative system in rats (an increase in the concentration of MDA).The administration of methionine reduced the process of lipid peroxidation (a decreased in the concentration of MDA). The best antioxidative properties have been demonstrated by methionine in rat liver.
-
-
Ameliorative effect of tamarind leaf on fluoride-induced metabolic alterations
OBJECTIVES: Fluoride is a serious health hazard across several nations, and chronic intake of fluoride deranges the carbohydrate, lipid and antioxidant metabolism in general. As there are limited remedial measures to prevent fluorosis, we investigated the role of tamarind leaf as a food supplement in restoration of carbohydrate, lipid and
-
Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat
BACKGROUND: Sodium fluoride (NaF) intoxication is associated with oxidative stress and altered antioxidant defense mechanism. The present study was carried out to evaluate the potential protective role of blackberry and quercetin (Q) against NaF-induced oxidative stress and histological changes in liver, kidney, testis and brain tissues of rats. METHODS: The rats
-
Maize purple plant pigment protects against fluoride-induced oxidative damage of liver and kidney in rats
Anthocyanins are polyphenols and well known for their biological antioxidative benefits. Maize purple plant pigment (MPPP) extracted and separated from maize purple plant is rich in anthocyanins. In the present study, MPPP was used to alleviate the adverse effects generated by fluoride on liver and kidney in rats. The results
-
Investigation on the effect of Hibiscus Sabdariffa calyxethanolic extract on sodium fluoride induced fluorosis in rats
Flu o rosis was induced by the oral administration of Sodium Fluoride (10mg/kg) for 30 days. On 30th day the Flurosis was confirmed by studying the level of fluorine in serum and urine. Treatment was started from 30th day to 60th day by ingesting Hibiscus Sabdariffa calyxethanolic extract 200 mg/kg and
-
The role of calcium in ameliorating the oxidative stress of fluoride in rats
The present study was carried out to investigate the effects of fluoride toxicity on some biochemical, hormonal, and histological parameters of female rats and the protective role of calcium against such effects. Adult female albino rats were divided into five groups; control group received distilled water for 60 days, calcium
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride Exposure Increases Metabolic Requirement for Magnesium
Fluoride's toxicity is significantly enhanced in the presence of nutritional deficiencies. Similarly, fluoride exposure increases the body's requirement for certain nutrients. An individual with a high intake of fluoride, for example, will need a proportional increase in calcium to avoid the mineralization defects (e.g., osteomalacia) that fluoride causes to bone
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
-
Fluoride Exposure Increases Metabolic Requirement for Calcium & Vitamin D
It is well known that individuals with nutrient deficiencies are more susceptible to fluoride toxicity, including fluoride's bone effects. As discussed in the following studies, fluoride increases the skeleton's need for calcium (and vitamin D) by increasing the amount of unmineralized tissue (osteoid) in the bone. When insufficient calcium and
Related FAN Content :
-