Fluoride Action Network

Abstract

It has been suggested that oxidative stress plays a major role in various forms of cell death, including necrosis and apoptosis. We have previously reported that fluoride (NaF) induces apoptosis in HL-60 cells by caspase-3 activation. The main focus of this investigation was to arrive at a possible pathway of the apoptosis induced by NaF upstream of caspase-3, because the mechanism is still unknown. The present study showed that after exposure to NaF, there was an increase in MDA and 4-HNE and a loss of mitochondrial membrane potential (deltaPsi(m)) was also observed in NaF-treated cells. There was a significant increase in cytosolic cytochrome c, which is released from the mitochondria. We have reported a downregulation of Bcl-2 protein in NaF-treated cells. The antioxidants N-acetyl cysteine (NAC), glutathione (GSH) protected the cells from loss of deltaPsi(m), and there was no cytochrome c exit or Bcl-2 downregulation, and we suggest that these antioxidants prevent apoptosis induced by NaF. These results suggested that perhaps NaF induced apoptosis by oxidative stress-induced lipid peroxidation, causing loss of deltaPsi(m), and thereby releasing cytochrome c into the cytosol and further triggering the caspase cascade leading to apoptotic cell death in HL-60 cells.