Abstract
Monoaminergic neurotransmission is a key element in the physiopathology of depressive disorders, but information is still sparse on animal models of this disease. Here, we used the olfactory bulbectomy (OBX) model of depression to characterize cAMP-second messenger signaling pathways, i.e., adenylyl cyclase activity (basal, sodium fluoride (NaF)- and forskolin-stimulated conditions) as well as Gi and Gs protein levels in different regions of the limbic system. Two weeks after surgery and compared to sham controls, OBX rats displayed reduced NaF-stimulated adenylyl cyclase activity and increased Gi/Gs ratios in the hypothalamus, pre-frontal and cingulate cortices but not in the amygdala, hippocampus and caudate nucleus. No differences were found in basal or forskolin-stimulated conditions. The observed reduction of adenylyl cyclase activity induced by NaF and the increase in the Gi/Gs ratio could explain the changes in neurotransmission in OBX rats as well as in humans with depression.
-
-
Effects of fluoride accumulation on some enzymes of brain and gastrocnemius muscle of mice
This study reports accumulation of fluoride and altered activities of some enzymes involved in free-radical metabolism and membrane function in whole brain and gastrocnemius muscle of female mice treated with NaF (20mg/kg/body weight) for 14 days. The body weight and somatic index were decreased, whereas fluoride levels were significantly increased
-
Chronic fluoride exposure alters antioxidant enzymes in rat brain and intestine
Background: Low Fluoride use has been advocated as a therapeutic agent for delaying tooth decay however, high fluoride exposure has been associated with behavioral changes, low IQ, and altered brain functions and development. Although Fluoride generally does not generate free radicals but is still implicated in free radical associated damage
-
Suppression of mitochondrial oxidative phosphorylation and TCA enzymes in discrete brain regions of mice exposed to high fluoride: amelioration by Panax ginseng (Ginseng) and Lagerstroemia speciosa (Banaba) extracts
Chronic fluoride intoxication results in pathophysiological complications pertaining to soft tissues, called non-skeletal fluorosis. This study examined whether fluoride-induced alterations in selected parameters that are indicative of mitochondrial dysfunction accompany the toxic effects of fluoride in discrete brain regions in vivo and also explored the possibility of treatment with Ginseng
-
Effect of fluorosis on mice learning and memory behaviors and brain SOD activity and MDA content
Objective: Explore the brain mechanism of the effect of fluorosis on learning and memory behavior. Method: A method combining behavioral observation and biochemical testing was used to study the effects of long-term drinking different concentrations of sodium fluoride on mouse learning and memory behavior and changes in content of brain
-
Dehydrogenase activity in the brain of fluoride and aluminium induced wistar rats
Dehydrogenases are cellular enzymes usually used as indicators of changes in cell activity and morphology; this includes metabolic processes such as structural differentiation, cell migration, cellular damage and even cell death; hence, assay of enzymes as Lactate dehydrogenase and Glucose 6 phosphate dehydrogenase could provide evidence for the role of
Related Studies :
-
-
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
Related FAN Content :
-