Abstract
Mechanical properties of 25 standardized specimens of compact bone from a 45-year-old man with extreme endemic fluorosis were compared with similar specimens of nonfluorotic bone. Data from dry and wet tested specimens were compared. Tensile strength, strain, energy absorbed to failure, and modulus of elasticity were reduced in fluorotic specimens while compressive strength, strain and energy were increased in both wet and dry specimens. Compressive properties exceeded tensile properties. Drying increased tensile and compressive strength and modulus but decreased tensile and compressive strength and energy absorbed. Dry specimens tended to follow Hooke’s Law but wet specimens exhibited visco-elastic behavior. Wet fluorotic specimens had lower tensile properties but higher compressive properties and were more dense than fresh human compact bone.
-
-
Fluoride-related bone disease associated with habitual tea consumption
Acquired osteosclerosis is a rare disorder of bone formation but an important consideration in adults with sclerotic bones or elevated bone density results. In such patients, malignancy, hepatitis C, and fluorosis should all be considered when making a diagnosis. We describe 4 patients evaluated at our Metabolic Bone Disease Clinic
-
[Generalized osteopathy with pathological fractures in a patient with long-term exposure to fluorine-containing plastics].
In a 68-year-old man with a painful syndrome of the lower extremities which began at the age of 64 years, workup revealed a generalized osteopathy with sclerosis of the axial skeleton and osteopenia at the extremities associated with pathologic fractures. The occupational history showed exposure to several synthetics such as
-
Bone mineral structure after six years fluoride treatment investigated by backscattered electron imaging (BSEI) and small angle x-ray scattering (SAXS): a case report
NaF, a bone formation stimulating agent, is used for the treatment of osteoporosis. Controversy exists concerning the quality of the newly formed bone and the antifracture effectiveness. We report about a 70 years old woman, who had received 50 mg NaF/d for about 6 years. Calcium or Vit D supplements
-
Dual Energy X-Ray Absorptiometry (DXA) study of endemic skeletal fluorosis in a village of Nalgonda District, Andhra Pradesh, India
A comparative study of bone mineral density (BMD) and bone fracture was conducted in a fluorotic and a nonfluorotic area of the Nalgonda District, Andhra Pradesh, India. BMD measured by dual X- ray absorptiometry (DXA) of L2–L4 vertebrae, femoral neck, hip, and whole body was significantly higher by 112%, 43%,
-
Non-Endemic Skeletal Fluorosis: Causes And Associated Secondary Hyperparathyroidism (Case Report and Literature Review).
Highlights Fluorocarbon “huffing” is an under-appreciated cause of skeletal fluorosis (SF) We present a SF case with hyperparathyroidism, osteosclerosis, and osteomalacia SF may go undetected due to variation in symptoms, radiology, and biochemistry Dietary calcium, prior bone health, and skeletal F exposure influence SF features SF is common in
Related Studies :
-
-
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
Related FAN Content :
-