Abstract
Fluoride administration in both man and animals has been shown to stimulate new bone formation. However, the bone is poorly mineralized, and osteomalacia and secondary hyperparathyroidism frequently occur. In this study we investigated the effect of variable levels of fluoride and calcium intake, accompanied by vitamin D, on osteoporosis in eleven patients treated for one year. Bone biopsies indicated an increase in new bone formation in all patients receiving 45 mg of sodium fluoride per day, whereas SOO mg of calcium per day prevented both osteomalacia and any increase in bone resorption. In order to restore bone mass in osteoporotic subjects without producing roentgenographic or microscopic: evidence of fluorosis, a therapeutic regimen of 50 mg of sodium fluoride and at least 900 mg of calcium per day and 50,000 units of vitamin D twice weekly is recommended.
-
-
Vitamin D deficiency, rickets, and fluorosis in India
Data on the vitamin D status of the populations in a tropical country like India have seldom been documented. Vitamin D deficiency is presumed to be rare. Population studied by the author and others in the country has proved otherwise. Studies were carried out to document the dietary habits, serum
-
Nutritional and metabolic rickets
Nutritional rickets is caused by vitamin D deficiency due to lack of exposure to sunlight. Neonatal rickets occurs only in infants born to mothers with very severe osteomalacia. Calcium deficiency alone does not cause mineralisation defects. It only causes osteoporosis and secondary hyperparathyroidism with raised plasma, 1,25 (OH)2D and osteocalcin.
-
Nutritional bone disease in Indian population
Syndromes of bone disease and deformities consequent to disorders of nutrition, bone and mineral metabolism constitute a serious national health problem. The studies on this subject are scanty. Data on nutritional bone disease are described and discussed. We had surveyed 337.68 million population residing in 0.39 million villages in 22
-
Severe bone deformities in young children from vitamin D deficiency and fluorosis in Bihar-India
A case-control study was undertaken to understand the etiopathology of the bone deformities among young children in a fluoride-affected village of the Bihar State. Two villages were selected: one village with high fluoride in drinking water (7.9 +/- 4.15 ppm), and the other village with normal levels of fluoride (0.6
-
Effect of fluoride on reactive oxygen species and bone metabolism in postmenopausal women.
A study was made of the effects of fluoride (F) on the antioxidant defense systems of postmenopausal women residing in a fluorotic and a nonfluorotic village in Chitoor district, Andhra Pradesh, India. Twenty-five postmenopausal women (approximately 10 years postmenopause, mean age 57 years) residing in endemic fluorotic Adharam and nonfluorotic
Related Studies :
-
-
-
Fluoridation, Dialysis & Osteomalacia
In the 1960s and 1970s, doctors discovered that patients receiving kidney dialysis were accumulating very high levels of fluoride in their bones and blood, and that this exposure was associated with severe forms of osteomalacia, a bone-softening disease that leads to weak bones and often excruciating bone pain. Based on
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Similarities between Skeletal Fluorosis and Renal Osteodystrophy
It is quite possible, and indeed likely, that some kidney patients diagnosed with renal osteodystrophy are either suffering from skeletal fluorosis or their condition is being complicated/exacerbated by fluoride exposure.
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride Exposure Increases Metabolic Requirement for Calcium & Vitamin D
It is well known that individuals with nutrient deficiencies are more susceptible to fluoride toxicity, including fluoride's bone effects. As discussed in the following studies, fluoride increases the skeleton's need for calcium (and vitamin D) by increasing the amount of unmineralized tissue (osteoid) in the bone. When insufficient calcium and
Related FAN Content :
-