Abstract
Genetic factors underlie the susceptibility and the resistance to dental fluorosis (DF). The A/J (DF susceptible) and 129P3/J (DF resistant) mouse strains have previously been used to detect quantitative trait loci (QTLs) associated with DF on chromosome (Chr) 2 and Chr 11. In the present study, increased marker density genotyping followed by interval mapping was performed to narrow the QTL intervals and improve the logarithm of the odds (to the base 10) (LOD) scores. Narrower intervals were obtained on Chr 2 where LOD ? 6.0 (57-84 cM or ? 51 Mb), LOD ? 7.0 (62-79 cM or ? 32 Mb), and LOD ? 8.0 (65-74 cM or ? 17 Mb); and on Chr 11 where LOD ? 6.0 (18-51 cM or ? 53 Mb), LOD ? 7.0 (28-48 cM or ? 34 Mb), and LOD ? 8.0 (31-45 cM or ? 22 Mb). Haplotype analysis between A/J and 129P3/J mice further reduced the QTL intervals. Accn1 was selected as a candidate gene based upon its location near the peak LOD score on Chr 11 and distant homology with the Caenorhabditis elegans fluoride-resistance gene, flr1. The severity of DF between Accn1(-/-) and wild-type mice was not significantly different. Hence, the loss of ACCN1 function does not modify DF severity in mice. Narrowing the DF QTL intervals will facilitate additional candidate gene selections and interrogation.
-
-
JNK Signaling Pathway Mediates Fluoride-Induced Upregulation of CK1a during Enamel Formation.
Fluorosis is a defect in the enamel mineral content caused by excessive fluoride intake during amelogenesis; the interaction of various factors in the development and progression of fluorosis has not been defined. Casein kinase 1a (CK1a) is constitutively active in cells and is involved in diverse cellular processes; however, its
-
Effects of Fluoride on Oxidative Stress Markers of Lipid, Gene, and Protein in Rats.
Endemic fluorosis is a systemic chronic disease caused by excessive intake of fluoride. It is widely accepted that oxidative stress is closely related to fluorosis; however, molecular mechanism of oxidative stress in fluorosis remains unclear. This study investigated the effects of fluoride (F) on oxidative stress markers of lipid, gene,
-
Hydrochemistry of mountain rivers in the Sierra de Velasco, La Rioja, Argentina: implications on dental fluorosis through statistical modeling.
Dental fluorosis is a disease associated with prolonged intake of high concentrations of fluoride, mainly by drinking water consumption. In a rural region in NW Argentina, several localities are supplied for domestic use by surface waters with variable contents of dissolved F? (from 0.3 to 3.1 mg L?1) of geogenic origin. Dental
-
[In vivo and in vitro experimental study on the effect of fluoride-induced autophagy in rat HAT-7 cell line].
PURPOSE: To study the effect of fluoride on autophagy in rat ameloblasts both in vitro and in vivo. METHODS: Logarithmic-phase HAT-7 cells were cultured in different concentrations of fluoride for 48h. Transmission electron microscopy (TEM) was used to detect autophagosomes. Western blot and RT-qPCR were carried out to examine the expression
-
Possible Association Between Polymorphisms in ESR1, COL1A2, BGLAP, SPARC, VDR, and MMP2 Genes and Dental Fluorosis in a Population from an Endemic Region of West Bengal.
Dental fluorosis (DF) is the most prevalent form of fluorosis in India affecting millions of people all over the country. As estrogen receptor 1 (ESR1), collagen type 1 alpha 2 (COL1A2), bone ?-carboxyglutamic acid protein (BGLAP), secreted protein acidic and cysteine-rich (SPARC), vitamin D receptor (VDR), and matrix metallopeptidase 2
Related Studies :
-
-
-
Dental Fluorosis Is a "Hypo-mineralization" of Enamel
Teeth with fluorosis have an increase in porosity in the subsurface enamel ("hypomineralization"). The increased porosity of enamel found in fluorosis is a result of a fluoride-induced impairment in the clearance of proteins (amelogenins) from the developing teeth. Despite over 50 years of research, the exact mechanism by which fluoride impairs amelogin
-
Mechanisms by Which Fluoride Causes Dental Fluorosis Remain Unknown
When it comes to how fluoride impacts human health, no tissue in the body has been studied more than the teeth. Yet, despite over 50 years of research, the mechanism by which fluoride causes dental fluorosis (a hypo-mineralization of the enamel that results in significant staining of the teeth) is not
-
Dental Fluorosis in the U.S. 1950-2004
Before the widespread use of fluoride in dentistry, dental fluorosis was rarely found in western countries. Today, with virtually every toothpaste now containing fluoride, and most U.S. water supplies containing fluoride chemicals, dental fluorosis rates have reached unprecedented levels. In the 1950s, it was estimated that only 10% of children in
-
Moderate/Severe Dental Fluorosis
In its "moderate" and severe forms, fluoride causes a marked increase in the porosity of the enamel. After eruption into mouth, the porous enamel of moderate to severe fluorosis readily takes up stain, creating permanent brown and black discolorations of the teeth. In addition to extensive staining, teeth with moderate to severe fluorosis are more prone to attrition and wear - leading to pitting, chipping, and decay.
-
Racial Disparities in Dental Fluorosis
In 2005, the Centers for Disease Control published the results of a national survey of dental fluorosis conducted between 1999 and 2002. According to the CDC, black children in the United States have significantly higher rates of dental fluorosis than either white or Hispanic children. This was not the first time that black children were found to suffer higher rates of dental fluorosis. At least five other studies -- dating as far back as the 1960s -- have found black children in the United States are disproportionately impacted by dental fluorosis.
Related FAN Content :
-