Abstract
In 1982, 29 7-day-old American kestrel (Falco sparverius) chicks from captive stock were randomly assigned to one of three dietary regimens: (1) 10 birds were fed daily with cockerel mash (0 ppm of F-: control birds); (2) 10 birds were fed daily with cockerel mash containing 1,120 ppm of F-; (3) 9 birds were fed daily with cockerel mash containing 2,240 ppm of F-. Growth of the kestrels was not significantly affected by NaF in their diet. No significant differences were found among the 3 groups for length of duodenum, jejunum and ileum. Rectum was longer as more fluoride was added to the diet. Weights of adrenals, brain, gizzard, spleen, heart, kidneys, liver, pancreas, and pectoral muscle were not significantly affected by treatment, although kidneys, spleen and adrenals tended to become lighter. Percent bone ash was significantly (P less than 0.05) increased, while bone breaking strength was significantly (P less than 0.05) decreased by treatment.
-
-
The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue.
Bones are metabolically active organs. Their reconstruction is crucial for the proper functioning of the skeletal system during bone growth and remodeling, fracture healing, and maintaining calcium-phosphorus homeostasis. The bone metabolism and tissue properties are influenced by trace elements that may act either indirectly through the regulation of macromineral metabolism,
-
Fluoride in Drinking Water: A Scientific Review of EPA’s Standards.
Excerpts: Summary Under the Safe Drinking Water Act, the U.S. Environmental Protection Agency (EPA) is required to establish exposure standards for contaminants in public drinking-water systems that might cause any adverse effects on human health. These standards include the maximum contaminant level goal (MCLG), the maximum contaminant level (MCL), and the secondary
-
New data for the validation of the mean daily maximum permissible concentration of hydrogen fluoride in atmospheric air
1. Round-the-clock exposure to hydrogen fluoride concentrations of 0.10 and 0.03 mg/m3 causes inhibition in the central nervous system, decreases the activity of a number of enzymes, impairs the phosphorus-calcium metabolism, and causes the accumulation of fluorine in the body and damage to the internal organs and bone tissue. 2. A
-
Environmental Fluoride 1977 by Rose & Marier
The Associate Committee on Scientific Criteria for Environmental Quality was established by the National Research Council of Canada in response to a mandate provided by the Federal Government to develop scientific guidelines for defining the quality of the environment. The concern of the NRC Associate Committee is strictly with scientific
-
Conceivable amelioration of NaF-induced toxicity in liver, kidney and brain of chicken by black tea extract: an in vitro study.
Sodium fluoride (NaF) toxicity on enzymatic and non-enzymatic oxidative stress markers of chicken liver, kidney and brain homogenate in in vitro condition where studied in present investigation. We studied alteration in the activity of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO) and glutathione (GSH) content to study oxidative stress.
Related Studies :
-
-
-
Fluoride Reduces Bone Strength in Animals
Most animal studies investigating how fluoride effects bone strength have found either a detrimental effect, or no effect. Few animal studies have found a beneficial effect. In fact, one of the few studies that found a beneficial effect was unable to be repeated by the same authors in a later
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
In Vitro Studies on Fluoride & Bone Strength
The "in vitro" research on fluoride and bone strength confirms what has repeatedly been found in animal and human studies: the more fluoride a bone has, the weaker the bone becomes. In an in vitro bone study, the researcher directly exposes a human or animal bone to a fluoride solution
-
Skeletal Fluorosis Causes Bones to be Brittle & Prone to Fracture
It has been known since as the early as the 1930s that patients with skeletal fluorosis have bone that is more brittle and prone to fracture. More recently, however, researchers have found that fluoride can reduce bone strength before the onset of skeletal fluorosis. Included below are some of the
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
Related FAN Content :
-