The results of our experiments suggest that increased doses of NaF cause more extensive osteosclerosis due to the decrease in number and/or activity of osteoclasts. Therefore oateosclerosis is caused primarily, not by increased bone formation but, by the inhibition of bone resorption. This view is supported by the fact that fluoride inhibits acid phosphatase activity more than alkaline phosphatase (6). The acid phosphatase activity of osteoclasts is of greater inteneiry than that of osteoblasts and the alkaline pbosphatase activity of oateoblasts is of greater intensity than that of osteoclasts. So fluoride inhibits the osteoclasts more than the osteoblasts.
In addition, the metabolism of osteoclasts of greater intensity than that of osteoblasts. Therefore osteoclasts ere more sensitive
to fluoride poisoning than osteoblasts. Osteosclerosis, caused by fluoride, is really the result of a toxic effect which is reflected by the dose dependent decrease of osteoclasts and of the hemopoietic elements. the irregular arrangement of the epiphyseal cartillage chondrocytes and also by skeletal necrosis.
-
-
Is the severity of osteosclerosis of fluorosis proportional to the dose of fluoride intake?
Histomorphometric study was made on a series of sections of undecalcified epiphyseal femoral specimens from rats with experimental fluorosis. The results revealed osteosclerosis in Group A (5 ppm) being more severe than that in Group B (25 ppm). With the increase of fluoride dose, the parameters fell down instead of
-
miR-486-3p regulates CyclinD1 and promotes fluoride-induced osteoblast proliferation and activation.
Fluoride is a persistent environmental pollutant, and its excessive intake contributes to skeletal and dental fluorosis. The mechanisms underlying fluoride-induced abnormal osteoblast proliferation and activation, which are related to skeletal fluorosis, have not yet been fully clarified. As important epigenetic regulators, microRNAs (miRNAs) participate in bone metabolism. On the basis
-
Suppression of Sclerostin and Dickkopf-1 levels in patients with fluorine bone injury
Evidence has been accumulating for the role of Sclerostin and Dickkopf-1 as the antagonists of Wnt/B-Catenin signaling pathway, which suppresses bone formation through inhibiting osteoblastic function. To get deep-inside information about the expression of the antagonists in patients with fluorine bone injury, a case-control study was conducted in two counties
-
Aberrant methylation-induced dysfunction of p16 is associated with osteoblast activation caused by fluoride.
Chronic exposure to fluoride continues to be a public health problem worldwide, affecting thousands of people. Fluoride can cause abnormal proliferation and activation of osteoblast and osteoclast, leading to skeletal fluorosis that can cause pain and harm to joints and bones and even lead to permanent disability. Nevertheless, there is
-
Sodium fluoride induces hypercalcemia resulting from the upregulation of both osteoblastic and osteoclastic activities in goldfish, Carassius auratus
The influence of sodium fluoride (NaF) on calcium metabolism was examined in goldfish (fresh water teleost). At 2days after administration of NaF (500ng/g body weight; 5?g/g body weight) (around 10-5 to 10-4M in goldfish), we indicated that plasma calcium levels upregulated in both doses of NaF-treated goldfish. To examine the
Related Studies :
-
-
-
Fluoride's Effect on Osteoblasts (Bone-Forming Cells)
As noted by the National Research Council, "[p]erhaps the single clearest effect of fluoride on the skeleton is its stimulation of osteoblast proliferation." (NRC 2006). Osteoblasts are bone-forming cells. "Stimulatory effects of fluoride on osteoblasts result in formation of osteoid, which subsequently undergoes mineralization." (Fisher RL, et al. 1989). If the new
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride Content of Tea
Tea, particularly tea drinks made with lower quality older leaves, contain high levels of fluoride. Because of these high levels, research has found that individuals who drink large amounts of tea can develop skeletal fluorosis -- a painful bone disease caused by excessive fluoride intake. Since skeletal fluorosis is often misdiagnosed by
Related FAN Content :
-