Abstract
Evidence has been accumulating for the role of Sclerostin and Dickkopf-1 as the antagonists of Wnt/B-Catenin signaling pathway, which suppresses bone formation through inhibiting osteoblastic function. To get deep-inside information about the expression of the antagonists in patients with fluorine bone injury, a case-control study was conducted in two counties in Hubei Province. Urinary and serum fluoride were significantly higher in patients with fluorine bone injury than in healthy controls. Additionally, patients with fluorine bone injury had significantly lower serum Sclerostin and Dickkopf-1 levels compared with healthy controls (P<0.001). Serum Sclerostin and Dickkopf-1 levels were significantly correlated with serum fluoride in all studied subjects (n=186). Low Sclerostin and Dickkopf-1 levels were associated with a significantly increased risk of fluorine bone injury. In conclusion, serum Sclerostin and Dickkopf-1 might be used as important markers of bone metabolism change and potential therapeutic targets to treat fluorine bone injury.
-
-
Experimental fluorosis in rats: NaF induced changes of bone and bone marrow
The results of our experiments suggest that increased doses of NaF cause more extensive osteosclerosis due to the decrease in number and/or activity of osteoclasts. Therefore oateosclerosis is caused primarily, not by increased bone formation but, by the inhibition of bone resorption. This view is supported by the fact that
-
Is the severity of osteosclerosis of fluorosis proportional to the dose of fluoride intake?
Histomorphometric study was made on a series of sections of undecalcified epiphyseal femoral specimens from rats with experimental fluorosis. The results revealed osteosclerosis in Group A (5 ppm) being more severe than that in Group B (25 ppm). With the increase of fluoride dose, the parameters fell down instead of
-
miR-486-3p regulates CyclinD1 and promotes fluoride-induced osteoblast proliferation and activation.
Fluoride is a persistent environmental pollutant, and its excessive intake contributes to skeletal and dental fluorosis. The mechanisms underlying fluoride-induced abnormal osteoblast proliferation and activation, which are related to skeletal fluorosis, have not yet been fully clarified. As important epigenetic regulators, microRNAs (miRNAs) participate in bone metabolism. On the basis
-
Fluoride promotes osteoblastic differentiation through canonical Wnt/B-catenin signaling pathway
Although fluoride is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/B-catenin pathway as a major signaling cascade in bone biology. Our earlier studies highlighted a probable role of canonical Wnt pathway in bone formation of chronic fluoride-exposed rats, but the
-
Downregulation of miR-4755-5p promotes fluoride-induced osteoblast activation via tageting Cyclin D1.
Background Endemic fluorosis remains a major public health issue in many countries. Fluoride can cause abnormalities in osteoblast proliferation and activation, leading to skeletal fluorosis. However, its detailed molecular mechanism remains unclear. Based on a previous study, the aim of this study is to explore the role of miRNA in osteoblast
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride's Effect on Osteoblasts (Bone-Forming Cells)
As noted by the National Research Council, "[p]erhaps the single clearest effect of fluoride on the skeleton is its stimulation of osteoblast proliferation." (NRC 2006). Osteoblasts are bone-forming cells. "Stimulatory effects of fluoride on osteoblasts result in formation of osteoid, which subsequently undergoes mineralization." (Fisher RL, et al. 1989). If the new
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Symposium on the non-skeletal phase of chronic fluorosis: The Joints
Of 300 patients with endemic skeletal fluorosis 187 (110 children and 77 adults) showed evidence of arthritis. The spine, especially its cervical portion, appeared to be mainly involved; elbow, hip and knee joints followed next in order.
Related FAN Content :
-