Abstract
Bovine femur cortical bone specimens were tested in tension after being treated in vitro for 3 days with sodium fluoride solutions of different molarity (0.145, 0.5, and 2.0M). The treatments alter the mechanical properties of the bone samples with different degrees as compared to control samples (untreated). The mechanical properties of the treated samples have lower elastic modulus, yield and ultimate stress, acoustic impedance and hardness, and higher ultimate strain and toughness as compared to control samples. The observed effects were intensified with the increasing molarity of the treatment solutions. This study shows that the fluoride treatment can be used to investigate the composite behavior of bone tissue by altering the structurally important bone mineral content in a controlled manner.
-
-
The effect of fluoridated drinking water on the physical properties of the rat femur
Twenty-one-day old weanling albino rats were divided into paired control and experimental groups, both of which were given ad libitum supplies of rat cake diet and drinking water (fluoride ion content 0·2-0·3 p.p.m.). The drinking water of the experimental groups was supplemented by the addition of sodium flJioride to give
-
Compressive properties of cortical bone: mineral-organic interfacial bonding
Bone tissue is an anisotropic non-homogeneous composite material composed of inorganic, bone mineral fibres (hydroxyapatite) embedded in an organic matrix (type I collagen and non-collagenous proteins). Factors contributing to the overall mechanical behaviour include constituent volume fraction, mechanical properties, orientation and interfacial bonding interactions. Interfacial bonding between the mineral and
-
Effects of fluoride on rat vertebral body biomechanical competence and bone mass
For more than 30 years, sodium fluoride has been a commonly used therapeutic agent for established osteoporosis because of its repeatedly documented anabolic effect on trabecular bone mass. Recent clinical and experimental studies have, however, indicated a possible detrimental effect of fluoride on bone strength. Thus, the efficacy of fluoride
-
The effect of dietary sodium fluoride on internal organs, breast muscle, and bones in captive American kestrels (Falco sparverius)
In 1982, 29 7-day-old American kestrel (Falco sparverius) chicks from captive stock were randomly assigned to one of three dietary regimens: (1) 10 birds were fed daily with cockerel mash (0 ppm of F-: control birds); (2) 10 birds were fed daily with cockerel mash containing 1,120 ppm of F-;
-
The effects of sodium fluoride on bone breaking strength
The therapeutic use of sodium fluoride has been recommended in a variety of osteopenic bone diseases. The recommendations are based mainly on the known osteosclerotic effects of sodium fluoride and little information is available as to its effect on bone strength. The influence of various concentrations of sodium fluoride on
Related Studies :
-
-
-
Fluoride Reduces Bone Strength in Animals
Most animal studies investigating how fluoride effects bone strength have found either a detrimental effect, or no effect. Few animal studies have found a beneficial effect. In fact, one of the few studies that found a beneficial effect was unable to be repeated by the same authors in a later
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Mechanisms by which fluoride may reduce bone strength
Based on a large body of animal and human research, it is now known that fluoride ingestion can reduce bone strength and increase the rate of fracture. There are several plausible mechanisms by which fluoride can reduce bone strength. As discussed below, these mechanisms include: Reduction in Cortical Bone Density De-bonding of
-
Skeletal Fluorosis Causes Bones to be Brittle & Prone to Fracture
It has been known since as the early as the 1930s that patients with skeletal fluorosis have bone that is more brittle and prone to fracture. More recently, however, researchers have found that fluoride can reduce bone strength before the onset of skeletal fluorosis. Included below are some of the
Related FAN Content :
-