Abstract
-
-
Co-exposure to arsenic and fluoride on oxidative stress, glutathione linked enzymes, biogenic amines and DNA damage in mouse brain.
We studied the effects of combined exposure to arsenic and fluoride on (i) brain biogenic amines, oxidative stress and its correlation with glutathione and linked enzymes; (ii) alterations in the structural integrity of DNA; and (iii) brain and blood arsenic and fluoride levels. Efficacy of alpha-tocopherol in reducing these changes
-
Screening of Human Proteins for Fluoride and Aluminum Binding.
Previous studies showed that prolonged exposure to fluoride (F-) and aluminum (Al3+) ions is associated with numerous diseases including neurological disorders. They don't have any known biological function. But they can bind with proteins that interact with ions similar to them. Such unwanted interactions affect the normal biological function of
-
Interplay of glia activation and oxidative stress formation in fluoride and aluminium exposure.
BACKGROUND: Oxidative stress formation is pivotal in the action of environmental agents which trigger the activation of glial cells and neuroinflammation to stimulate compensatory mechanisms aimed at restoring homeostasis. AIM: This study sets to demonstrate the interplay of fluoride (F) and aluminium (Al) in brain metabolism. Specifically, it reveals how oxidative
-
Effects of fluoride accumulation on some enzymes of brain and gastrocnemius muscle of mice
This study reports accumulation of fluoride and altered activities of some enzymes involved in free-radical metabolism and membrane function in whole brain and gastrocnemius muscle of female mice treated with NaF (20mg/kg/body weight) for 14 days. The body weight and somatic index were decreased, whereas fluoride levels were significantly increased
-
Protective effect of resveratrol against neuronal damage through oxidative stress in cerebral hemisphere of aluminum and fluoride treated rats.
Aluminum has no defined biological function and it is potentially involved in the pathogenesis of neurodegenerative disorders. Furthermore, the presence of fluoride causes more aluminum to accumulate in the brain, resulting in increased neuronal damage. In recent years, resveratrol through its ameliorative effects was found to be a neuroprotectant. This
Related Studies :
-
-
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
Related FAN Content :
-