Abstract
The physiological toxicity of sodium fluoride on antioxidant system, organizational structure and apoptosis of brain tissue in Cyprinus carpio Linnaeus were studied. Results showed that along with the increasing concentration of sodium fluoride, the superoxide dismutase (SOD) and glutathione (GSH) activities increased firstly and then were inhibited after 30 days exposure. The SOD and GSH activities decreased after 60 and 90 days exposure. The content of lipid peroxides (MDA) increased during the whole test period. After 90 days exposure, histopathological changes of brain tissue were observed. It was found that thrombosis and structural changes in the cell layers were resulted from the exposure of sodium fluoride. The biological investigation results showed that there was a positive correlation between the cell apoptosis rate and the MDA levels (r = 0. 9968), but with dosage increasing, Bcl-2 protein concentration decreased, which was positive correlated with SOD and GSH activities (r =0. 9198 and 0. 9889, respectively).
-
-
Effects of chronic fluorosis on the brain.
Highlights Reviewing the mechanism of brain injury caused by chronic fluorosis is of great significance for protecting residents in fluorosis endemic areas. Abstract This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury,
-
Potential Role of Fluoride in the Etiopathogenesis of Alzheimer’s Disease.
The etiopathogenesis of Alzheimer’s disease has not been fully explained. Now, the disease is widely attributed both to genetic and environmental factors. It is believed that only a small percentage of new AD cases result solely from genetic mutations, with most cases attributed to environmental factors or to the interaction
-
Protective role of tert-butylhydroquinone against sodium fluoride-induced oxidative stress and apoptosis in PC12 cells.
The neurotoxicity of fluoride is associated with oxidative stress due to imbalance between production and removal of reactive oxygen species (ROS). In contrast, induction of detoxifying and antioxidant genes through activation of NF-E2-related factor 2 (Nrf2) has been implicated in preventing oxidative stress and apoptosis in neurodegenerative diseases. The present
-
Neuroprotective effect of ascorbic acid and ginkgo biloba against fluoride caused neurotoxicity
Excessive consumption of fluoride through drinking water or other sources lead to skeletal and dental fluorosis. According to the world health organization 23 nations are facing the problem of fluorosis. In the recent past researchers describe the non-skeletal fluorosis where soft tissues and major organs are the victims of fluoride
-
Rutin attenuates neurobehavioral deficits, oxidative stress, neuro-inflammation and apoptosis in fluoride treated rats.
Highlights The influence of rutin on fluoride – induced neurotoxicity in rat was studied. Rutin reversed the fluoride – induced neurobehavioral deficits in rats. Rutin reversed the fluoride – induced inhibition of acetylcholinesterase activity in rat cerebrum and striatum. Rutin enhanced antioxidant status and inhibited neuro-inflammation and apoptosis in fluoride
Related Studies :
-
-
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
Related FAN Content :
-