Abstract
Lesions of skeletal and dental fluorosis have been described recently in eastern grey kangaroos (Macropus giganteus). The present study further examined the epidemiology of skeletal fluorosis in this species. Bone fluoride concentrations were obtained from a range of skeletal sites of animals from a high (Portland Aluminium) and a low (Cape Bridgewater) fluoride environment in Victoria, Australia. Age, but not sex, affected the mean bone fluoride concentration of kangaroos. For a given age, bone fluoride concentrations were significantly higher in kangaroos from Portland than Cape Bridgewater. Concentrations varied between skeletal sites examined, with samples containing cancellous bone having higher fluoride concentrations than those containing only cortical bone.
-
-
Value of the bone biopsy in the diagnosis of industrial fluorosis
Iliac crest biopsies taken from 43 men with industrial fluorosis were compared with control bone samples. The bone fluoride content was determined, histological examinations were made on stained sections and microradiographs, and morphometric analysis performed on the microradiographs alone. In the subjects with fluorosis, the bone fluoride content (5617 +/- 2143
-
Association of Dietary Calcium Intake with Dental, Skeletal and Non-Skeletal Fluorosis among Women in the Ethiopian Rift Valley.
Fluorosis is a major public health problem in the Rift Valley of Ethiopia. Low calcium (Ca) intake may worsen fluorosis symptoms. We assessed the occurrence of fluorosis symptoms among women living in high-fluoride (F) communities in South Ethiopia and their associations with dietary Ca intake. Women (n = 270) from
-
High levels of fluoride in groundwater from Northern parts of Indo-Gangetic plains reveals detrimental fluorosis health risks.
Highlights This study provides an overview of fluoride distribution and health risks in the fluoride endemic region of Northern Indo-Gangetic Plain. Groundwater fluorides concentration exceeded the safe drinking water limit in 98% of sampling locations. Health hazard index (HQFluoride) exceeded the unitary value in all the individual groups signifying that
-
Skeletal fluorosis in humans: a review of recent progress in the understanding of the disease
Endemic skeletal fluorosis is a chronic metabolic bone and joint disease caused by ingesting large amounts of fluoride either through water or rarely from foods of endemic areas. Fluoride is a cumulative toxin which can alter accretion and resorption of bone tissue. It also affects the homeostasis of bone mineral
-
Industrial fluorosis [Franke et al.]
This is a review of findings on workers in an aluminum plant with industrial fluorosis. Early signs of the disease are nocturnal back pains and restriction of the rotation of the trunk. Stage I of the disease usually occurs after 10 years, stage II after 15 years and stage III
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
X-Ray Diagnosis of Skeletal Fluorosis
In 1937, Kaj Roholm published his seminal study Fluorine Intoxication in which he described three phases of bone changes that occur in skeletal fluorosis. (See below). These three phases, which are detectable by x-ray, have been widely used as a diagnostic guide for detecting the disease. They describe an osteosclerotic bone disease that develops first in the axial skeleton (the spine, pelvis, and ribs), and ultimately results in extensive calcification of ligaments and cartilage, as well as bony outgrowths such as osteophytes and exostoses. Subsequent research has found, however, that x-rays provide a very crude measure for diagnosing fluorosis since the disease can cause symptoms and effects (e.g., osteoarthritis) before, and in the absence of, radiologicaly detectable osteosclerosis in the spine.
-
Skeletal Fluorosis in the U.S.
Although there has been a notable absence of systematic studies on skeletal fluorosis in the U.S., the available evidence indicates that the consumption of artificially fluoridated water is likely to cause skeletal fluorosis and other forms of bone disease in people with kidney disease and other vulnerable populations.
Related FAN Content :
-