Abstract
Fluoride is frequently added to drinking water supplies, various food products, toothpaste, and mouth rinses to prevent tooth damage. However, at high concentrations, fluoride can cause fluorosis and damage to the brain tissue due to its excitotoxicity and oxidative stress effects. The damage of the Purkinje cells of the cerebellum can lead to motor coordination disorders. The present study aimed at investigating the effects of sodium fluoride on the motor coordination and the number of Purkinje cells of the cerebellum of rats. Adult male Wistar rats were divided into four groups, namely a control group which received reverse osmosis distilled water and three treated groups which received sodium fluoride at doses of 5, 10, or 20 mg/kg bw. The treatment lasted for 30 days. The motor coordination of the rats was examined using a rotarod prior and subsequent to the treatments. The number of Purkinje cells was estimated using physical fractionator design. The numbers of Purkinje cells of the F10 and F20 groups were significantly lower than that of the control group. No significant differences in the results of the motor coordination test were found. The administration of sodium fluoride at doses of 10 and 20 mg/kg bw caused a decrease in the number of Purkinje cells of the cerebellum in rats.
-
-
Dental fluorosis and catalase Immunoreactivity of the Brain Tissues in rats exposed to high fluoride pre- and postnatally
This study evaluated dental fluorosis of the incisors and immunoreactivity in the brain tissues of rats given chronic fluoride doses pre- and postnatally. Female rats were given drinking water with 0, 30 or 100 ppm fluoride ad libitum throughout gestation and the nursing period. In addition, 63 male offspring were
-
Evaluation of standardized Bacopa monniera extract in sodium fluoride-induced behavioural, biochemical, and histopathological alterations in mice
Effect of standardized Bacopa monniera (BM; family: Scrophulariaceae) extract (100 and 300 mg/kg) against sodium fluoride (NaF; 100 and 200 ppm)-induced behavioural, biochemical, and neuropathological alterations in mice was evaluated. Akinesia, rotarod (motor coordination), forced swim test (depression), open field test (anxiety), transfer latency (memory), cholinesterase (ChE), and oxidative stress
-
Chronic AIF3 Administration: II. Selected Historical Observations.
Male Long-Evans rats were divided into four groups based on the concentrations of the AlF3 in the drinking water: 0.5 ppm, 5.0 ppm, 50 ppm, or a control solution of double-distilled, de-ionized water. Water was available ad libitum for 45 weeks. Following the behavioral studies, histological, immunohistochemical, and overall brain
-
Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat
BACKGROUND: Sodium fluoride (NaF) intoxication is associated with oxidative stress and altered antioxidant defense mechanism. The present study was carried out to evaluate the potential protective role of blackberry and quercetin (Q) against NaF-induced oxidative stress and histological changes in liver, kidney, testis and brain tissues of rats. METHODS: The rats
-
Effect of fluoride exposure on synaptic structure of brain areas related to learning-memory in mice.
SUMMARY: Learning-memory behavior was tested in mice on a Y-maze after they drank water containing different concentrations of sodium fluoride. Impairment of the structure of the Gray I synaptic interface in the CA3 area of the hippocampus was analyzed quantitatively by electron microscopy and a computer imaging processor. The main
Related Studies :
-
-
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & IQ: 74 Studies
• As of May 2022, a total of 83 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 74 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure to
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
Related FAN Content :
-