Fluoride Action Network

Abstract

Estrogen exerts essential role in liver metabolism, and its deficiency is frequently accompanied by a series of metabolic disorder diseases. To investigate the role of estrogen deficiency in fluorine ions (F) induced liver injury, the ovariectomy (OVX) rat models were performed by surgically removing the ovaries, and the rats from OVX and non-OVX models were exposed to differential dose of F (0, 25, 50 and 100 mg/L) in drinking water for 90 days. The liver morphological structure was evaluated by hematoxylin–eosin staining. Proliferation ability of hepatocytes was evaluated by 5-bromo-2-deoxyuridine (BrdU) assay. And distribution of lipid droplets in liver tissue was observed via oil red O staining. In addition, the liver function and lipid metabolism parameters in serum were detected by commercial kits. Results showed that F induced hepatocytes morphological damage and inhibited the proliferation ability of hepatocytes; estrogen deficiency exacerbated these changes. The deposition of lipid droplets in the liver tissue was multiplicative with increased F dose, especially after estrogen deficiency. In addition, F exposure increased (P < 0.05 or P < 0.01) serum aminotransferase (ALT), aminotransferase (AST), alkaline phosphatase (ALP), and ?-glutamyl transpeptidase (?-GT) activities and total bilirubin (T-bil) level; meanwhile, serum triglyceride (TG) and cholesterol (TC) levels were also elevated (P < 0.05 or P < 0.01). F-induced liver function and lipid metabolism indexes were further increased (P < 0.05 or P < 0.01) in the state of estrogen deficiency. In conclusion, estrogen deficiency aggravated F-induced liver damage and lipid metabolism disorder.


*Original abstract online at https://link.springer.com/article/10.1007%2Fs12011-021-02857-1


References

  1. Parhofer KG (2016) The treatment of disorders of lipid metabolism. Dtsch Arztebl Int 113(15):261–268

    PubMed  PubMed Central  Google Scholar

  2. Pei K, Gui T, Kan D, Feng H, Li Y (2020) An overview of lipid metabolism and nonalcoholic fatty liver disease. Biomed Res Int 4:1–12

    Google Scholar

  3. Tonstad S, Després JP (2011) Treatment of lipid disorders in obesity. Expert Rev Cardiovasc Ther 9(8):1069–1080

    PubMed  Article  Google Scholar

  4. Karalis DG (2008) The role of lipid-lowering therapy in preventing coronary heart disease in patients with type 2 diabetes. Clin Cardiol 31(6):241–248

    PubMed  Article  Google Scholar

  5. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H, Mashek DG (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Investig 121(6):2102–2110

    CAS  PubMed  PubMed Central  Article  Google Scholar

  6. Jones JG (2016) Hepatic glucose and lipid metabolism. Diabetologia 59(6):1098–1103

    CAS  PubMed  Article  Google Scholar

  7. Lan X, Wu L, Wu N, Chen Q, Li Y, Du X, Wei C, Feng L, Li Y, Osoro EK, Sun M, Ning Q, Yan X, Yang X, Li D, Lu S (2019) Long noncoding RNA lnc-HC regulates PPAR?-mediated hepatic lipid metabolism through miR-130b-3p. Mol Ther Nucleic Acids 18:954–965

    CAS  PubMed  PubMed Central  Article  Google Scholar

  8. Farrell GC, Larter CZ (2006) Non-alcoholic fatty liver: from steatosis to cirrhosis. Hepatology 43:S99–S112

    CAS  PubMed  Article  Google Scholar

  9. Golabi P, Rhea L, Henry L, Younossi ZM (2019) Hepatocellular carcinoma and non-alcoholic fatty liver disease. Hepatol Int 13(6):688–694

    PubMed  Article  Google Scholar

  10. Bilet L, Brouwers B, van Ewijk PA, Hesselink MK, Kooi ME, Schrauwen P, Schrauwen-Hinderling VB (2015) Acute exercise does not decrease liver fat in men with overweight or NAFLD. Sci Rep 5:9709

    CAS  PubMed  PubMed Central  Article  Google Scholar

  11. Sun Z, Miller RA, Patel RT, Chen J, Dhir R, Wang H, Zhang D, Graham MJ, Unterman TG, Shulman GI, Sztalryd C, Bennett MJ, Ahima RS, Birnbaum MJ, Lazar MA (2012) Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat Med 18(6):934–942

    CAS  PubMed  PubMed Central  Article  Google Scholar

  12. Sukhorukov VN, Khotina VA, Chegodaev YS, Ivanova E, Orekhov AN (2020) Lipid metabolism in macrophages: focus on atherosclerosis. Biomedicines 8(8):262

    CAS  PubMed Central  Article  PubMed  Google Scholar

  13. Maggio M, Cattabiani C, Lauretani F, Artoni A, Bandinelli S, Schiavi G, Vignali A, Volpi R, Ceresini G, Lippi G, Aloe R, De Vita F, Giallauria F, McDermott MM, Ferrucci L, Ceda GP (2012) The relationship between sex hormones, sex hormone binding globulin and peripheral artery disease in older persons. Atherosclerosis 225(2):469–474

    CAS  PubMed  PubMed Central  Article  Google Scholar

  14. Hodson L, Banerjee R, Rial B, Arlt W, Adiels M, Boren J, Marinou K, Fisher C, Mostad IL, Stratton IM, Barrett PH, Chan DC, Watts GF, Harnden K, Karpe F, Fielding BA (2015) Menopausal status and abdominal obesity are significant determinants of hepatic lipid metabolism in women. J Am Heart Assoc 4(10):e002258

    PubMed  PubMed Central  Article  CAS  Google Scholar

  15. Palmisano BT, Zhu L, Stafford JM (2017) Role of estrogens in the regulation of liver lipid metabolism. Adv Exp Med Biol 1043:227–256

    CAS  PubMed  PubMed Central  Article  Google Scholar

  16. Marchi R, Dell’Agnolo CM, Lopes T, Gravena A, Demitto MO, Brischiliari S, Borghesan D, Carvalho M, Pelloso SM (2017) Prevalence of metabolic syndrome in pre- and postmenopausal women. Arch Endocrinol Metab 61(2):160–166

    PubMed  Article  Google Scholar

  17. Yang ZX, Shen W, Sun H (2010) Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease. Hepatol Int 4(4):741–748

    PubMed  PubMed Central  Article  Google Scholar

  18. Palmisano BT, Le TD, Zhu L, Lee YK, Stafford JM (2016) Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice. J Lipid Res 57(8):1541–1551

    CAS  PubMed  PubMed Central  Article  Google Scholar

  19. Gerhardt K (2016) Two to tango: ER? and estrogen balance cholesterol metabolism in the liver. Biol Reprod 94(6):131

    PubMed  Article  CAS  Google Scholar

  20. Uebi T, Umeda M, Imai T (2015) Estrogen induces estrogen receptor alpha expression and hepatocyte proliferation in the livers of male mice. Genes cells 20(3):217–223

    CAS  PubMed  Article  Google Scholar

  21. Chiu EJ, Lin HL, Chi CW, Liu TY, Lui WY (2002) Estrogen therapy for hepatectomy patients with poor liver function? Med Hypotheses 58(6):516–518

    CAS  PubMed  Article  Google Scholar

  22. Kao TL, Kuan YP, Cheng WC, Chang WC, Jeng LB, Yeh S, Ma WL (2018) Estrogen receptors orchestrate cell growth and differentiation to facilitate liver regeneration. Theranostics 8(10):2672–2682

    CAS  PubMed  PubMed Central  Article  Google Scholar

  23. Huh K, Shin US, Choi JW, Lee SI (1994) Effect of sex hormones on lipid peroxidation in rat liver. Arch Pharm Res 17(2):109–114

    CAS  PubMed  Article  Google Scholar

  24. Zhou BH, Zhao J, Liu J, Zhang JL, Li J, Wang HW (2015) Fluoride-induced oxidative stress is involved in the morphological damage and dysfunction of liver in female mice. Chemosphere 139:504–511

    CAS  PubMed  Article  Google Scholar

  25. Wang HW, Liu J, Wei SS, Zhao WP, Zhu SQ, Zhou BH (2020) Mitochondrial respiratory chain damage and mitochondrial fusion disorder are involved in liver dysfunction of fluoride-induced mice. Chemosphere 241:125099

    CAS  PubMed  Article  Google Scholar

  26. Lam KK, Cheng PY, Hsiao G, Chen SY, Shen HH, Yen MH, Lee YM (2009) Estrogen deficiency-induced alterations of vascular MMP-2, MT1-MMP, and TIMP-2 in ovariectomized rats. Am J Hypertens 22(1):27–34

    CAS  PubMed  Article  Google Scholar

  27. Lee YH, Son JY, Kim KS, Park YJ, Kim HR, Park JH, Kim KB, Lee KY, Kang KW, Kim IS, Kacew S, Lee BM, Kim HS (2019) Estrogen deficiency potentiates thioacetamide-induced hepatic fibrosis in Sprague-Dawley rats. Int J Mol Sci 20(15):3709

    CAS  PubMed Central  Article  PubMed  Google Scholar

  28. Kania N, Widowati W, Dewi F, Christianto A, Setiawan B, Budhiparama N, Noor Z (2018) Cinnamomum burmanini Blume increases bone turnover marker and induces tibia’s granule formation in ovariectomized rats. J Ayurveda Integr Med 9(1):20–26

    PubMed  Article  Google Scholar

  29. Koubaa-Ghorbel F, Chaâbane M, Jdidi H, Turki M, Makni-Ayadi F, El Feki A (2021) Salvia officinalis mitigates uterus and liver damages induced by an estrogen deficiency in ovariectomized rats. J Food Biochem 45(5):e13542

    PubMed  Article  Google Scholar

  30. Xu T, Yan M, Wang Y, Wang Z, Xie L, Tang C, Zhang G, Yu J (2014) Estrogen deficiency reduces the dentinogenic capacity of rat lower incisors. J Mol Histol 45(1):11–19

    CAS  PubMed  Article  Google Scholar

  31. Turdi S, Huff AF, Pang J, He EY, Chen X, Wang S, Chen Y, Zhang Y, Ren J (2015) 17-? estradiol attenuates ovariectomy-induced changes in cardiomyocyte contractile function via activation of AMP-activated protein kinase. Toxicol Lett 232(1):253–262

    CAS  PubMed  Article  Google Scholar

  32. Atmaca N, Atmaca HT, Kanici A, Anteplioglu T (2014) Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity in rats. Food Chem Toxicol 70:191–197

    CAS  PubMed  Article  Google Scholar

  33. Song GH, Huang FB, Gao JP, Liu ML, Pang WB, Wb Li, Yan XY, Huo MJ, Yang X (2015) Effects of fluoride on DNA damage and caspase-mediated apoptosis in the liver of rats. Biol Trace Elem Res 166(2):173–182

    CAS  PubMed  Article  Google Scholar

  34. Nabavi SM, Nabavi SF, Eslami S, Moghaddam AH (2012) In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem 132(2):931–935

    CAS  Article  Google Scholar

  35. Lu Y, Luo Q, Cui H, Deng H, Kuang P, Liu H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging 9(6):1623–1639

    CAS  PubMed  PubMed Central  Article  Google Scholar

  36. Kourouma A, Keita H, Duan P, Quan C, Bilivogui KK, Qi S, Christiane NA, Osamuyimen A, Yang K (2015) Effects of 4-nonylphenol on oxidant/antioxidant balance system inducing hepatic steatosis in male rat. Toxicol Rep 2:1423–1433

    CAS  PubMed  PubMed Central  Article  Google Scholar

  37. Mehta SR, Thomas EL, Bell JD, Johnston DG, Taylor-Robinson SD (2008) Non-invasive means of measuring hepatic fat content. World J Gastroenterol 14(22):3476–3483

    PubMed  PubMed Central  Article  Google Scholar

  38. Marchesini G, Petta S, Dalle Grave R (2016) Diet, weight loss, and liver health in nonalcoholic fatty liver disease: pathophysiology, evidence, and practice. Hepatology 63(6):2032–2043

    PubMed  Article  Google Scholar

  39. Dousset JC, Rioufol C, Feliste R, Lévy P, Bourbon P (1984) Effects of inhaled HF on lipid metabolism in guinea pigs. Fundam Appl Toxicol 4(4):618–623

    CAS  PubMed  Article  Google Scholar

  40. Czerny B, Put A, My?liwiec Z, Juzyszyn Z (2000) The influence of quercetin on some parameters of lipid metabolism in rats chronically exposed to ammonium fluoride. Fluoride 33(1):27–32

    CAS  Google Scholar

  41. Hassan HA, Yousef MI (2009) Mitigating effects of antioxidant properties of black berry juice on sodium fluoride induced hepatotoxicity and oxidative stress in rats. Food Chem Toxicol 47(9):2332–2337

    CAS  PubMed  Article  Google Scholar

  42. Wang X, Zheng R, Yao Q, Liang Z, Wu M, Wang H (2019) Effects of fluoride on the histology, lipid metabolism, and bile acid secretion in liver of Bufo gargarizans larvae. Environ Pollut 254(Pt B):113052

    CAS  PubMed  Article  Google Scholar

  43. Kanbur M, Eraslan G, Silici S, Karabacak M (2009) Effects of sodium fluoride exposure on some biochemical parameters in mice: evaluation of the ameliorative effect of royal jelly applications on these parameters. Food Chem Toxicol 47(6):1184–1189

    CAS  PubMed  Article  Google Scholar

  44. Poynard T, Ratziu V, Charlotte F, Goodman Z, McHutchison J, Albrecht J (2001) Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis c. J Hepatol 34(5):730–739

    CAS  PubMed  Article  Google Scholar

  45. Shimizu I (2003) Impact of oestrogens on the progression of liver disease. Liver Int 23(1):63–69

    CAS  PubMed  Article  Google Scholar

  46. Borrás C, Gambini J, López-Grueso R, Pallardó FV, Viña J (2010) Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim Biophys Acta 1802(1):205–211

    PubMed  Article  CAS  Google Scholar

  47. Pedram A, Razandi M, O’Mahony F, Harvey H, Harvey BJ, Levin ER (2013) Estrogen reduces lipid content in the liver exclusively from membrane receptor signaling. Sci Signal 6(276):ra36

    PubMed  Article  CAS  Google Scholar

  48. Li J, Wei L, Zhao C, Li J, Liu Z, Zhang M, Wang Y (2019) Resveratrol maintains lipid metabolism homeostasis via one of the mechanisms associated with the key circadian regulator bmal1. Molecules 24(16):2916

    CAS  PubMed Central  Article  PubMed  Google Scholar

  49. Zhu L, Brown WC, Cai Q, Krust A, Chambon P, McGuinness OP, Stafford JM (2013) Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance. Diabetes 62(2):424–434

    CAS  PubMed  PubMed Central  Article  Google Scholar

  50. Gao H, Fält S, Sandelin A, Gustafsson JA, Dahlman-Wright K (2008) Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver. Mol Endocrinol 22(1):L10–L22

    Article  CAS  Google Scholar

  51. Bryzgalova G, Lundholm L, Portwood N, Gustafsson JA, Khan A, Efendic S, Dahlman-Wright K (2008) Mechanisms of antidiabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice. Am J Physiol Endocrinol Metab 295(4):E904–E912

    CAS  PubMed  PubMed Central  Article  Google Scholar

Download references

Funding

This work is supported by the China National Nature Science Foundation (Grant No. 31201963) and the Natural Science Foundation of Henan (Grant No. 202300410120).