Abstract
Brain tissues for neurohistopathological study were obtained at autopsy from albino rabbits that had been subcutaneously injected for 15 weeks with 0, 5, 10, 20, and 50 mg sodium fluoride in 1 mL of aqueous solutions/kg bw/day. Neuropathological changes occurred with loss of the molecular layer and glial cell layer in the brain tissues of rabbits exposed to the three higher fluoride doses. The Purkinje neurones exhibited chromatolysis and acquired a “ballooned” appearance. Nissl substance showed various degrees of decrease and even complete loss. Fragmented particles were retained in the perinuclear zone. The perikaryon showed vacuolization, and spheroid bodies were present in the neoplasm. These cytoplasmic inclusions appeared as various sized ovoid bodies or elongated eosinophilic masses due to which the nucleus was shifted to the periphery. These neurotoxic changes in the brain suggested that there was a direct action of fluoride upon the nerve tissue which was responsible for central nervous system problems such as tremors, seizures, and paralysis indicating brain dysfunction seen at the two highest doses.
-
-
Effect of long-term administration of fluoride on levels of protein, free amino acids and RNA in rabbit brain
Biochemical alterations in the brain produced during experimental fluorosis were studied. Albino rabbits of both sexes were administered sodium fluoride solutions in the concentrations of 5, 10, 20, and 50 mg/kg body wt/day by subcutaneous injection for 100 days. The control rabbits were given 1 cc distilled water/kg body weight/day
-
Effect of fluorosis on mice learning and memory behaviors and brain SOD activity and MDA content
Objective: Explore the brain mechanism of the effect of fluorosis on learning and memory behavior. Method: A method combining behavioral observation and biochemical testing was used to study the effects of long-term drinking different concentrations of sodium fluoride on mouse learning and memory behavior and changes in content of brain
-
Experimental pharmacological researches regarding the influence of sodium fluoride in allopathic and homeopathic doses in central nervous system's performances. A correlation between behavioral response in classic maze test and morphological aspects of cerebral cortex
The influence of fluorine administration on central nervous system’s (CNS) performances in female mice treated during gestation with two distinct doses of sodium fluoride (NaF): 0.25 mg and 0.50 mg. The research extended also to offspring (generation 1 – F1), treated with NaF in allopathic (0.25 and 0.50 mg), homeopathic
-
[Effects of fluoride on SNAP-25 gene expression in rat hippocampus].
After the establishment of fluorosis animal model, the gene expression of SNAP-25 was detected in order to provide experimental data for nervous system injury induced by fluoride. The results showed that, compared with the de-ionized water group, SNAP-25 mRNA expression was significantly reduced by fluoride.
-
[Effects of sodium fluoride on the activity of Ca2+Mg(2+)-ATPase in synaptic membrane in rat brain].
Effects of sodium fluoride on Ca2+Mg(2+)-ATPase activity of synaptic membrane in rat brain were studied with in vitro or in vivo methods. Concentrations of sodium fluoride of 0.3, 1.6, 8.0, 20.0 and 40.0 mmol/L can significantly inhibit the activity of the enzyme with proportions of 6.6%, 18.0%, 41.0%, 55.5% and
Related Studies :
-
-
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride & IQ: 68 Studies
As of February 2021, a total of 76 studies have investigated the relationship between fluoride and human intelligence. Of these investigations, 68 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while over 60 animal studies have found that fluoride exposure impairs the learning and/or
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
Related FAN Content :
-