Abstract
Brain tissues for neurohistopathological study were obtained at autopsy from albino rabbits that had been subcutaneously injected for 15 weeks with 0, 5, 10, 20, and 50 mg sodium fluoride in 1 mL of aqueous solutions/kg bw/day. Neuropathological changes occurred with loss of the molecular layer and glial cell layer in the brain tissues of rabbits exposed to the three higher fluoride doses. The Purkinje neurones exhibited chromatolysis and acquired a “ballooned” appearance. Nissl substance showed various degrees of decrease and even complete loss. Fragmented particles were retained in the perinuclear zone. The perikaryon showed vacuolization, and spheroid bodies were present in the neoplasm. These cytoplasmic inclusions appeared as various sized ovoid bodies or elongated eosinophilic masses due to which the nucleus was shifted to the periphery. These neurotoxic changes in the brain suggested that there was a direct action of fluoride upon the nerve tissue which was responsible for central nervous system problems such as tremors, seizures, and paralysis indicating brain dysfunction seen at the two highest doses.
-
-
Actions of sodium fluoride on acetylcholinesterase activities in rats
This study was carried out to observe the effects of sodium fluoride on acetylcholinesterase (AChE) activities in the cerebral synaptic membranes (SPM) and the peripheral red blood cells (RBC) of rats by in vivo and in vitro experiments. In the in vivo study, pregnant rats ingested ad libitum fluorinated drinking
-
Chronic AIF3 Administration: II. Selected Historical Observations.
Male Long-Evans rats were divided into four groups based on the concentrations of the AlF3 in the drinking water: 0.5 ppm, 5.0 ppm, 50 ppm, or a control solution of double-distilled, de-ionized water. Water was available ad libitum for 45 weeks. Following the behavioral studies, histological, immunohistochemical, and overall brain
-
Effects of chronic fluoride exposure on object recognition memory and mRNA expression of SNARE complex in hippocampus of male mice
This study aimed to investigate the effects of long-term fluoride exposure on object recognition memory and mRNA expression of soluble N-ethylmaleimidesensitive fusion protein attachment protein receptors (SNARE) complex (synaptosome-associated protein of 25 kDa (SNAP-25), vesicle-associated membrane protein 2 (VAMP-2), and syntaxin 1A) in the hippocampus of male mice. Sixty sexually matured
-
Pathological changes in the tissues of rats (albino) and monkeys (macaca radiata) in fluorine toxicosis
1. Stomach, duodenum, small intestine, kidney, liver, spleen, skin, heart, aorta, lungs, brain, pancreas, adrenals, thyroid and parathyroid of rats and monkeys suffering from chronic fluorosis have been histologically examined. 2. Fluorine has not been found to have any effect on the heart muscle, aorta, skin and parathyroids, whereas it has
-
Determination of the contents of amino-acid and monoamine neurotransmitters in fetal brains from a fluorosis-endemic area.
The contents of five types of amino-acid neurotransmitters and three types of monoamine neurotransmitters in the brains of fetuses aborted through induced labor in a chronic fluorosis-endemic area were determined. Findings revealed that the content of the excitatory amino acid, aspartic acid, was significantly lower than in the fetuses from
Related Studies :
-
-
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride & IQ: 67 Studies
As of May 2020, a total of 75 studies have investigated the relationship between fluoride and human intelligence. Of these investigations, 67 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while over 60 animal studies have found that fluoride exposure impairs the learning and/or
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
Related FAN Content :
-