Abstract
Thirty-two one-month-old Wistar albino rats were divided randomly into four equal groups of eight (female:male = 3:1). To assess damage to DNA in their brain cells, the first group (1) of rats served as the untreated control, the second group (2) was administered high fluoride (HiF, 100 mg NaF/L in the drinking water), the third group (3) was placed on a low iodine intake (LI, 0.0855 mg I/kg diet), and the fourth group (4) was exposed to the same high fluoride and low iodine combined (HiF+LI). At 20 months of age, the rats were anesthetized and their brain cells prepared for single cell gel electrophoresis (SCGE = comet assay). DNA damage in the brain cells assessed by the tailing ratio percent was 24.68±20.81% in the control group 1 and in the HiF, LI, and HiF+LI groups 2, 3, and 4, it was 90.93±9.17%, 89.04±4.99%, and 92.48±4.04%, respectively. Moreover,the proportion of grade III damage to the brain cells increased by 24.00% in the HiF group 2, 21.88% in the LI group 3, and 33.33% in the HiF+LI group 4, but only by 8.0% in the control group 1. These results indicate that DNA strands in the brain cells of rats are adversely affected by exposure to high fluoride, low iodine, and together in combination.
-
-
[Effects of selenium and zinc on the DNA damage caused by fluoride in pallium neural cells of rats].
To investigate the effects of fluoride on DNA damage as well as the effects of selenium and zinc against fluoride respectively or jointly in pallium neural cells of rats, single cell gel electrophoresis was used to detect the DNA damage of neural cells prepared in vitro. The results showed that
-
[Studies on DNA damage and apoptosis in rat brain induced by fluoride].
OBJECTIVE: To explore the DNA damage effects and apoptosis in brain cells of rats induced by sodium fluoride. METHODS: SD rats were divided into two groups, i.e. control group and fluoride treated group, which were injected intraperitoneally with distilled water and sodium fluoride (20 mg.kg(-1).d(-1)) respectively. On the hand, 5
-
Studies on the DNA and RNA contents of heart, liver and kidney of rats with chronic fluorosis
17 rats with chronic fluorosis induced by prolonged drinking of water containing 50 ppm fluorine and 17 rats drinking low-fluorine water served as control were used to study the DNA and RNA contents of heart, liver and kidney. The findings suggest that excessive accumulation of fluorine can suppress the synthesis
-
[Study of the mechanism of neurone apoptosis in rats from the chronic fluorosis].
Objective: Study the mechanism of action chronic fluorosis in neurones. Methods: Terminal deoxyribo-nucleotide transferase-mediated dUTP-biotin nick end labeling (TUNEL) and flow cytometry (FCM) were used to observe changes of apoptosis in cerebral cells in chronic fluorosis in rats. Results: TUNEL results show non-random expression of DAB positive stain apoptosis cells which appear
-
Proteomic analysis of brain proteins of rats exposed to high fluoride and low iodine.
Epidemiological investigations reveal that high fluoride and low iodine have strong adverse effects on the intelligence quotient (IQ) of children. Studies also report that in some high fluoride areas, iodine deficiency also exists, especially in China. Here, with the proteomic techniques, we first report on the proteomic changes in brain
Related Studies :
-
-
-
Fluoride, Water Hardness, and Endemic Goitre
Variations in goitre prevalence were found to correlate closely with the fluoride content (p=0-74; P<0-01) and with the hardness (p=0.77; P<0-01) of the water in each village. The effects of fluoride and water hardness seem to be independent.
-
Fluoride & Rickets
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid (unmineralized bone) content of bone. When bones have too much osteoid, they become soft and prone to fracture -- a condition known as osteomalacia. When osteomalacia develops during childhood, it is called "rickets." The potential for fluoride
-
The Relationship Between Fluoride Exposure & Goitre in South Africa
As a general rule simple goitre, irrespective of the cause, can be very, or fairly, satisfactorily combated by an adequate increase in man's daily iodine intake, except when the enlargement of the gland is due to the ingestion of excessive amounts of fluorine. The only correct solution to fluorine-induced endemic goitre is the removal of this element from the drinking water.
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
Related FAN Content :
-