Abstract
Sodium fluoride (NaF), which stimulates bone formation, and bisphosphonates, which reduce bone resorption, are both used in the treatment of osteoporosis, and are binding to bone mineral. In this study, using small-angle X-ray scattering and backscattered electron imaging, we analyzed the bone mineral in the vertebrae of minipigs treated with fluoride, with the bisphosphonate alendronate (ALN), or with vehicle. All specimens were investigated blindly. A slight increase in the average thickness of the mineral crystals as well as changes in the structure of the mineral/collagen composite were found in the case of fluoride-treated animals. No differences were found between ALN-treated animals and controls. The changes produced by fluoride are in the same direction as seen in bones from patients treated with NaF, albeit much smaller. They also correlate quantitatively with the reduction in biomechanical properties of bone in fluoride-treated minipigs found in an earlier study with the same animals. These findings suggest that small changes in the structure of the mineral/collagen composite in bone may considerably affect its biomechanical properties. It also emphasizes the delicate balance between the increase of bone mass and deterioration of bone material properties for the effect of fluoride on the biomechanical properties of bone.
-
-
In situ observation of fluoride-ion-induced hydroxyapatite-collagen detachment on bone fracture surfaces by atomic force microscopy
The topography of freshly fractured bovine and human bone surfaces was determined by the use of atomic force microscopy (AFM). Fracture surfaces from both kinds of samples exhibited complex landscapes formed by hydroxyapatite mineral platelets with lateral dimensions ranging from ~90 nm × 60 nm to ~20 nm × 20 nm. Novel AFM techniques
-
The effects of short-term fluoride ingestion on bone formation and resorption in the rat femur
The femurs from rats given 120 ppm fluoride in their drinking water for 4 weeks were examined with histological, histochemical, and radiographic methods. Blood removed from the rats prior to sacrifice was analyzed for calcium, phosphorus, and alkaline phosphatase. Results of this study indicated that the ingestion of fluoride produced
-
The effect of fluoride treatment on bone mineral in rabbits
Fluoride therapy has been used clinically for many years, but its use remains controversial and many basic questions remain unanswered. Accordingly, this study returns to an animal model to study the effects of high doses of fluoride on bone mineral in rabbits. Twelve rabbits, aged 3(1/2) months at the start
-
Fluoride ion effect on interfacial bonding and mechanical properties of bone
The mechanical properties of composite material (such as bone) rely on the properties of its constituents as well as the interfacial bonding between them. Bone tissue is a porous mineralized matrix composite of inorganic bone mineral and organic constituents (collagen and non-collagenous proteins). The porosity of bone is due in
-
Varying the mechanical properties of bone tissue by changing the amount of its structurally effective bone mineral content
The effect of fluoride ions on the mechanical properties of bone tissue in tension was investigated with an in vitro model. Structurally effective Bone Mineral Content (BMC) of bovine bone tissue was changed by fluoride ion treatment. First, bovine cortical bone specimens were treated with a detergent solution in order
Related Studies :
-
-
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
-
The Relationship Between Fluoride, Bone Density, and Bone Strength
Although fluoride has generally been found to reduce the bone density of cortical bone, it is well documented that fluoride can increase the density of trabecular bone (aka cancellous bone). Trabecular bone is the primary bone of the spine, whereas cortical bone is the primary bone of the legs and arms. While increases in
-
Mechanisms by which fluoride may reduce bone strength
Based on a large body of animal and human research, it is now known that fluoride ingestion can reduce bone strength and increase the rate of fracture. There are several plausible mechanisms by which fluoride can reduce bone strength. As discussed below, these mechanisms include: Reduction in Cortical Bone Density De-bonding of
-
Fluoride Content of Bone Impairs Bone Quality
Water Fluoridation Increases the Fluoride Content of Bone "Fluoride analyses of the cadaver material from Kuopio revealed that fluoridation of drinking water increases the fluoride concentration in bone. In some individual cases the amount of fluoride in trabecular bone may rise to relatively high levels, notably in patients with impaired renal
-
Fluoride Reduces Bone Strength in Animals
Most animal studies investigating how fluoride effects bone strength have found either a detrimental effect, or no effect. Few animal studies have found a beneficial effect. In fact, one of the few studies that found a beneficial effect was unable to be repeated by the same authors in a later
Related FAN Content :
-