Abstract
The aim of this research was to study the mechanism of the decreased learning and memory of rats with chronic fluorosis. Compared with controls, decreased learning and memory ability, lower levels of total antioxidant capacity (TAOC), and increased content of malondialdehyde (MDA) in brain tissues were observed in both male and female young adult rats after 6 months with either 5 or 50 mg NaF/L in their drinking water. Interestingly, the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the brain were reduced more in the rats with the lower NaF concentration than in those with the higher concentration, thereby suggesting a paradoxical dose-response effect of F on these enzymes. The results indicate that the reduced learning capacity and memory ability of rats induced by F may be connected with increased oxidative stress and diminished cholinergic nervous system responses.
-
-
A correlation between serum vitamin, acetylcholinesterase activity and IQ in children with excessive endemic fluoride exposure in Rajasthan, India
Fluoride is widely distributed in nature and a direct source of adverse health effects in human populations. Fluoride poisoning attributed by long-term exposure to high levels of fluoride [is] called fluorosis. The present study was carried out among 9-14 years old school children of Dausa district, Rajasthan India. The subjects
-
Effects of high fluoride and arsenic on brain biochemical indexes and learning-memory in rats
Nine-six Wistar rats were randomly divided into four groups of 24 rats in each group (female:male = 1:1). Over a period up to 90 days, with one untreated group as controls, the other three groups were administered, respectively, high fluoride (100 mg NaF/L), high arsenic (50 mg As2O3/L), or both
-
Effects of chronic fluorosis on the brain.
Highlights Reviewing the mechanism of brain injury caused by chronic fluorosis is of great significance for protecting residents in fluorosis endemic areas. Abstract This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury,
-
Evaluation of Metformin and Dehydrozingerone against fluorosis induced neurodevelopmental toxicity in preclinical models.
Background: Inorganic fluoride is widely used in dental practices to treat problems like dental caries and also to prevent bone related issues. It has been reported that exposure to excess amounts of fluoride either through drinking water or other sources impairs vital functions of the body and can
-
Vitamin A deficiency: An oxidative stress marker in sodium fluoride (NaF) induced oxidative damage in developing rat brain
Fluoride induced oxidative stress through depletion in levels of various anti-oxidants such as glutathione, superoxide dismutase (SOD), fat soluble vitamins (D and E) with increased levels of lipid peroxidation (LPO) and fluoride aggravate the damage in rodents as well as in humans. Vitamins A, a fat soluble vitamin possess antioxidant
Related Studies :
-
-
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
Related FAN Content :
-