Abstract
Exposure to fluoride and excessive ethanol consumption has been identified as a serious public health problem in many parts of the world, including India. Thus, the effect of co-exposure to fluoride and ethanol for 3-6 weeks was studied on lipid peroxidation (LPO) and oxidative stress related parameters in the rat brain. After 3 weeks, co-treated animals showed 95% increase in LPO levels compared to control. However, the levels of reduced glutathione, total and protein thiols were decreased. These changes were accompanied by a decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase. Rats exposed to fluoride together with ethanol for 6 weeks resulted in 130% increase in LPO and decrease in the reduced glutathione levels. The activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase were reduced under these conditions. Brain histology revealed excessive lymphocytes, edema and spongeosis in the cortical region after six weeks of fluoride and ethanol treatment. These results suggest that exposure to fluoride together with ethanol enhances lipid peroxidation by affecting antioxidant defence systems in the rat brain.
-
-
Silymarin and quercetin abrogates fluoride induced oxidative stress and toxic effects in rats
Flavonoids have been extensively studied and reported to possess widespread biological activities, including antioxidant and chelating properties. They have been proposed to exert beneficial effects in a multitude of diseased states generated due to oxidative stress. Therapeutic efficacy of oral administration of Silymarin and Quercetin after fluoride exposure (50 ppm
-
[Influence of free radical inducer on the level of oxidative stress in brain of rats with fluorosis].
OBJECTIVE: To study changes in content of lipid peroxide and composition of fatty acids in the brain of rats affiliated with chronic fluorosis after treatment with free radical inducer (ferric ion). METHODS: Thirty-six Wistar rats were divided into three groups, fed with similar fodder and varied concentrations of fluoride in drinking
-
Conceivable amelioration of NaF-induced toxicity in liver, kidney and brain of chicken by black tea extract: an in vitro study.
Sodium fluoride (NaF) toxicity on enzymatic and non-enzymatic oxidative stress markers of chicken liver, kidney and brain homogenate in in vitro condition where studied in present investigation. We studied alteration in the activity of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO) and glutathione (GSH) content to study oxidative stress.
-
JNK and NADPH oxidase involved in fluoride-induced oxidative stress in BV-2 microglia cells.
Abstract Excessive fluoride may cause central nervous system (CNS) dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS), and NADPH oxidase (NOX) is the major enzyme for the production of extracellular superoxide in microglia. ROS
-
Co-exposure to arsenic and fluoride on oxidative stress, glutathione linked enzymes, biogenic amines and DNA damage in mouse brain.
We studied the effects of combined exposure to arsenic and fluoride on (i) brain biogenic amines, oxidative stress and its correlation with glutathione and linked enzymes; (ii) alterations in the structural integrity of DNA; and (iii) brain and blood arsenic and fluoride levels. Efficacy of alpha-tocopherol in reducing these changes
Related Studies :
-
-
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
Related FAN Content :
-