Abstract
Sixty-four forty-day old male Wistar rats were divided randomly into two groups of thirty-two each. With one group untreated as controls, the other group was administered 150 mg NaF/L (68 ppm F–) in their drinking water to assess the effects of high fluoride on sperm quality and testicular histology at different developmental stages. In contrast to the control group, the F-treated rats exhibited a decline in sperm viability and a significant increase of sperm abnormalities 50, 80, 100, and 120 days after administration of sodium fluoride. Sperm density declined markedly at day 80 and day 120. The number of seminiferous epithelium cell layers (NSECL), the thickness of the seminiferous tubule (TST), and the diameter of the seminiferous tubule (DST) in the testis all decreased at day 50, 100, and 120. In short, the semen quality was impaired by fluoride in the drinking water, and the histological changes in the seminiferous epithelium of testicular tissues may be responsible for the diminished sperm quality in male rats.
-
-
Vitamin C and E supplementation can ameliorate NaF mediated testicular and spermatozoal DNA damages in adult Wistar rats.
Objective: Present study was designed to explore the efficacy of vitamin C and E (VC&VE) against fluoride mediated testicular, epididymal and spermatozoal anomalies. Materials and methods: Thirty two adult Wistar rats were divided into four groups. Group-I was control; Group-II received sodium fluoride (NaF) at 15 mg/kg/day
-
Effect of long-term fluoride exposure on lipid peroxidation and histology of testes in first- and second-generation rats
This experiment was designed to investigate the histological and lipid peroxidation effects of chronic fluorosis on testes tissues of first- and second-generation rats. Sixteen virgin female Wistar rats were mated with eight males (2:1) for approximately 12 h to obtain first-generation rats. Pregnant rats were divided into two groups: controls
-
Interleukin 17A deficiency alleviates fluoride-induced testicular injury by inhibiting the immune response and apoptosis.
Highlights Exposure to high-levels of fluoride causes reproductive toxicity in humans. Increased testes toxicity and inflammation were seen in a mouse model of fluorosis. The NaF-mediated testes toxicity and inflammation were absent in IL-17A -/- mice. In Leydig cells IL-17A and/or NaF increased apoptosis and decreased testosterone. Il-17A appears
-
Toxic effects of sodium fluoride on reproductive function in male mice
To investigate the effects and possible mechanisms of the action of fluoride on testis cell cycle and cell apoptosis in male mice, sexually mature male Kunming mice were exposed to 50, 100, 200, and 300 mg NaF/L in their drinking water for 8 weeks. At the end of the exposure
-
Positive PCNA and Ki-67 Expression in the Testis Correlates with Spermatogenesis Dysfunction in Fluoride-Treated Rats.
The present study aimed to evaluate the effect of fluoride (F) on spermatogenesis in male rats. F- at 50 and 100 mg/L was administered for 70 days, after which the testicular and epididymis tissues were collected to observe the histopathological structure under a light microscope. The ultrastructure of the testis and sperm
Related Studies :
-
-
-
Fluoride's Effect on Male Reproductive System: Animal Studies
Over 60 studies on animals (including rats, mice, roosters, and rabbits) have found that fluoride adversely impacts the male reproductive system. These studies have repeatedly found the following effects: (1) decreases in testosterone levels; (2) reduced sperm motility; (3) altered sperm morphology; (4) reduced sperm quantity; (5) increased oxidative stress; (6) and reduced capacity to breed.
-
Fluoride's Effect on Male Reproductive System -- The "Sprando/Collins" Anomaly
In contrast to the findings of over 60 animal studies from other research teams, a series of studies by FDA researchers Sprando & Collins reported virtually no evidence of reproductive toxicity among animals treated with very high levels of fluoride exposure. The reasons for this discrepancy remains unclear. Excerpts from Sprando/Collins' Studies: "This study
-
Fluoride's Effect on the Male Reproductive System -- In Vitro Studies
Carefully controlled in vitro studies have found that direct exposure of fluoride to the testes or semen inhibits testosterone production and damages sperm. While researchers have known since the 1930s that mega concentrations of fluoride can completely (but reversibly) immobilize sperm, it was not until the 1970s and 1980s that researchers found that relatively modest concentrations of fluoride could cause damage prior to complete immobilization.
-
Fluoride's Effect on Male Reproductive System - Human Studies
Consistent with in vitro and animal research, studies of human populations have reported associations between fluoride exposure and damage to the male reproductive system. Most notably, a scientist at the Food & Drug Administration reported in 1994 that populations in the United States with more than 3 ppm fluoride in their water had lower "total fertility rates" than populations with lower fluoride levels.
Related FAN Content :
-