Abstract
We made an investigation in 157 children, aged 12-13, born and grew up in a coal burning pattern endemic fluorosis area and an experiment on excessive fluoride intake in rat. The results showed:
(1) Excessive fluoride intake since early childhood would reduce mental work capacity (MWC) and hair zinc content:
(2) The effect on zinc metabolism was a mechanism of influence on MWC by excessive fluoride intake;
(3) Excessive fluoride intake decreased 5-hydroxy indole acetic acid and increased norepinephrine in rat brain; whether this is also a mechanism of the influence on MWC awaits confirmation.
-
-
Fluoride-induced neuronal oxidative stress amelioration by antioxidants in developing rats
Premated 3-month-old albino rats received 200-ppm fluoride ion (F) in their drinking water; the pups born to them were separately administered, in groups of six, daily doses of clinoptilolite, zinc, selenium, vitamin C, vitamin D, and propolis. On post-partum day 45, the pups were sacrificed, brain regions separated, and oxidative
-
[Effects of selenium and zinc on the DNA damage caused by fluoride in pallium neural cells of rats].
To investigate the effects of fluoride on DNA damage as well as the effects of selenium and zinc against fluoride respectively or jointly in pallium neural cells of rats, single cell gel electrophoresis was used to detect the DNA damage of neural cells prepared in vitro. The results showed that
-
Effects of high fluoride intake on child mental work capacity: Preliminary investigation into the mechanisms involved.
A study was carried out on 157 children, age 12–13, from a coal-burning fluorosis endemic area together with an experiment looking into the effect of high fluoride intake in animals. The results showed that early, prolonged high fluoride intake causes a decrease in a child’s mental work capacity and that prolonged high uptake of fluoride causes a child’s levels
-
Effect of maternal exposure of fluoride on biometals and oxidative stress parameters in developing CNS of rat.
Excessive intake of essential elements agitates elemental homeostasis resulting in their heterogeneous distribution. Distraction of these elements in central nervous system (CNS) have been demonstrated in many neurological disorders, which are vital in generating free radicals, causing oxidative stress, and contributing to neuronal maladies. The developing CNS is highly vulnerable
-
Antioxidants in the management of fluoride induced neural oxidative stress in developing rats
Fluoride (F) is highly electronegative anion with cumulative toxic effects, from prolonged ingestion that can lead to the pathogenesis known as fluorosis, a condition especially persistent in third world countries, where populations have little choice as to the main source of F-contaminated drinking. In recent times many neurological problems among
Related Studies :
-
-
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
Related FAN Content :
-