Fluoride Action Network

Abstract

Fluoride is a common element in nature and our daily life, and excessive intake of this element can cause fluorosis and irreversible brain damage. The toxic effects of fluoride on the central nervous system may be attributed to the release of inflammatory cytokines and ROS. GSK3B is a key protein that modulates NF-kB activity and inflammatory cytokine levels and plays an important role in the Wnt signaling pathway. In this study, we found that fluoride altered the inflammatory status and oxidative stress by inhibiting Wnt signaling pathway activity. This study thus provides a valid basis for the fluorine-induced neuroinflammation injury theory.


*Original abstract online at https://link.springer.com/article/10.1007/s10753-017-0556-y


 

References

  1. 1.

    Liu, F., et al. 2014. Fluoride exposure during development affects both cognition and emotion in mice. Physiology & Behavior 124: 1–7. CAS  Article  Google Scholar

  2. 2.

    Zhang, C., et al. 2013. The analog of Ginkgo biloba extract 761 is a protective factor of cognitive impairment induced by chronic fluorosis. Biological Trace Element Research 153 (1–3): 229–236. CAS  Article  PubMed  Google Scholar

  3. 3.

    Long, Y.G., et al. 2002. Chronic fluoride toxicity decreases the number of nicotinic acetylcholine receptors in rat brain. Neurotoxicology and Teratology 24 (6): 751–757. CAS  Article  PubMed  Google Scholar

  4. 4.

    Khan, S.A., et al. 2015. Relationship between dental fluorosis and intelligence quotient of school going children in and around Lucknow District: a cross-sectional study. Journal of Clinical and Diagnostic Research 9 (11): ZC10–ZC15.
    PubMed  PubMed Central  Google Scholar

  5. 5.

    Shuhua, X., et al. 2012. A role of fluoride on free radical generation and oxidative stress in BV-2 microglia cells. Mediators of Inflammation 2012: 102954. Article  PubMed  PubMed Central  Google Scholar

  6. 6.

    Abeti, R., and M.R. Duchen. 2012. Activation of PARP by oxidative stress induced by beta-amyloid: implications for Alzheimer’s disease. Neurochemical Research 37 (11): 2589–2596. CAS  Article  PubMed  Google Scholar

  7. 7.

    Zhou, J., et al. 2008. Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer’s disease. Journal of Neurochemistry 106 (5): 2080–2092. CAS  Article  PubMed  PubMed Central  Google Scholar

  8. 8.

    Cortese, G.P. and C. Burger, Neuroinflammatory challenges compromise neuronal function in the aging brain: postoperative cognitive delirium and Alzheimer’s disease. Behav Brain Res, 2016.

  9. 9.

    Orellana, A.M., et al. 2015. Age-related neuroinflammation and changes in AKT-GSK-3beta and WNT/ beta-CATENIN signaling in rat hippocampus. Aging (Albany NY) 7 (12): 1094–1111. Article  Google Scholar

  10. 10.

    Ajmone-Cat, M.A., et al. 2016. Glycogen synthase kinase 3 is part of the molecular machinery regulating the adaptive response to LPS stimulation in microglial cells. Brain, Behavior, and Immunity 55: 225–235. CAS  Article  PubMed  Google Scholar

  11. 11.

    Chen, J., C.S. Park, and S.J. Tang. 2006. Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. The Journal of Biological Chemistry 281 (17): 11910–11916. CAS  Article  PubMed  Google Scholar

  12. 12.

    Margarit, C., et al. 1998. Efficacy and safety of oral low-dose tacrolimus treatment in liver transplantation. Transplant International 11 (Suppl 1): S260–S266. Article  PubMed  Google Scholar

  13. 13.

    Esposito, G., et al. 2008. S100B induces tau protein hyperphosphorylation via Dickopff-1 up-regulation and disrupts the Wnt pathway in human neural stem cells. Journal of Cellular and Molecular Medicine 12 (3): 914–927. CAS  Article  PubMed  PubMed Central  Google Scholar

  14. 14.

    Ke, L., et al. 2016. Effects of sodium fluoride on lipid peroxidation and PARP, XBP-1 expression in PC12 cell. Biological Trace Element Research 173 (1): 161–167. CAS  Article  PubMed  Google Scholar

  15. 15.

    Ghosh, S., and M. Karin. 2002. Missing pieces in the NF-kappaB puzzle. Cell 109 (Suppl): S81–S96. CAS  Article  PubMed  Google Scholar

  16. 16.

    Chioca, L.R., et al. 2008. Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats. European Journal of Pharmacology 579 (1–3): 196–201. CAS  Article  PubMed  Google Scholar

  17. 17.

    Ando, M., et al. 1998. Health effects of indoor fluoride pollution from coal burning in China. Environmental Health Perspectives 106 (5): 239–244. CAS  Article  PubMed  PubMed Central  Google Scholar

  18. 18.

    Choi, A.L., et al. 2012. Developmental fluoride neurotoxicity: a systematic review and meta-analysis. Environmental Health Perspectives 120 (10): 1362–1368. CAS  Article  PubMed  PubMed Central  Google Scholar

  19. 19.

    Yan, L., et al. 2013. JNK and NADPH oxidase involved in fluoride-induced oxidative stress in BV-2 microglia cells. Mediators of Inflammation 2013: 895975. Article  PubMed  PubMed Central  Google Scholar

  20. 20.

    Kraft, A.D., and G.J. Harry. 2011. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. International Journal of Environmental Research and Public Health 8 (7): 2980–3018. Article  PubMed  PubMed Central  Google Scholar

  21. 21.

    Teo, J.L., and M. Kahn. 2010. The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Advanced Drug Delivery Reviews 62 (12): 1149–1155. CAS  Article  PubMed  Google Scholar

  22. 22.

    Die, L., et al. 2012. Glycogen synthase kinase-3 beta inhibitor suppresses Porphyromonas gingivalis lipopolysaccharide-induced CD40 expression by inhibiting nuclear factor-kappa B activation in mouse osteoblasts. Molecular Immunology 52 (1): 38–49. CAS  Article  PubMed  Google Scholar

  23. 23.

    Du, Q., and D.A. Geller. 2010. Cross-regulation between Wnt and NF-kappaB signaling pathways. For Immunopathol Dis Therap 1 (3): 155–181. Article  PubMed  PubMed Central  Google Scholar

  24. 24.

    Caricasole, A., et al. 2004. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. The Journal of Neuroscience 24 (26): 6021–6027. CAS  Article  PubMed  Google Scholar

  25. 25.

    Rosi, M.C., et al. 2010. Increased Dickkopf-1 expression in transgenic mouse models of neurodegenerative disease. Journal of Neurochemistry 112 (6): 1539–1551. CAS  Article  PubMed  Google Scholar

  26. 26.

    Cappuccio, I., et al. 2005. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is required for the development of ischemic neuronal death. The Journal of Neuroscience 25 (10): 2647–2657. CAS  Article  PubMed  Google Scholar

  27. 27.

    Busceti, C.L., et al. 2007. Induction of the Wnt inhibitor, Dickkopf-1, is associated with neurodegeneration related to temporal lobe epilepsy. Epilepsia 48 (4): 694–705. CAS  Article  PubMed  Google Scholar

Download references

Acknowledgements

This study was supported by BK20151159 from the Natural Science Foundation of Jiangsu Province, China, Project 81501185 of National Natural Science Foundation of China, Jiangsu Provincial Medical Youth Talent No.QNRC2016369, Xuzhou Medical Talents Project and Xuzhou technological and scientific project No. KC14SH050.