Abstract
Children are widely viewed as the population subgroup that is most vulnerable to the toxicities that result from exposure to environmental chemicals. Their enhanced vulnerability is due to a variety of behavioral and physiologic factors. For many chemicals, the central nervous system (CNS) is the most sensitive target organ. In general, the impacts depend on a chemical’s mode of action, the dose, and the stage of development at which exposure occurs. This paper surveys the toxicology of environmental chemicals, specifically the impacts on children’s intellectual development. It focuses on metals (or metalloids), including mercury, lead, arsenic, fluoride, as well as on pesticides, air pollution, synthetic organic chemicals, and endocrine disruptors. The final section discusses issues germane to estimating the global burden of disease associated with exposures to neurotoxic environmental chemicals.
Original abstract online at http://pm.amegroups.com/article/view/4617/html
-
-
Effect of fluoride exposure on intelligence in children.
The intelligence was measured of 907 children aged 8-13 years living in areas which differed in the amount of fluoride present in the environment. The Intelligence Quotient (IQ) of children living in areas with a medium or severe prevalence of fluorosis was lower than that of children living in areas
-
Acetylcholinesterase activity in fluorosis adversely affects mental well-being: an experimental study in rural Rajasthan
Fluoride toxicity is a burgeoning problem worldwide and also in Rajasthan in India. In the state of Rajasthan, almost all districts have high fluoride (up to 18.0 ppm) in their drinking/ground water sources and about 11 million of the population [is] at risk. Several clinical and experimental studies have reported
-
Effect of fluoride exposure on synaptic structure of brain areas related to learning-memory in mice.
SUMMARY: Learning-memory behavior was tested in mice on a Y-maze after they drank water containing different concentrations of sodium fluoride. Impairment of the structure of the Gray I synaptic interface in the CA3 area of the hippocampus was analyzed quantitatively by electron microscopy and a computer imaging processor. The main
-
Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity.
Fluoride is capable of inducing neurotoxicity, but its mechanisms remain elusive. This study aimed to explore the roles of endoplasmic reticulum (ER) stress and autophagy in sodium fluoride (NaF)-induced neurotoxicity, focusing on the regulating role of ER stress in autophagy. The in vivo results demonstrated that NaF exposure impaired the learning
-
The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System.
Fluorides occur naturally in the environment, the daily exposure of human organism to fluorine mainly depends on the intake of this element with drinking water and it is connected with the geographical region. In some countries, we can observe the endemic fluorosis-the damage of hard and soft tissues caused by
Related Studies :
-
-
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
Related FAN Content :
-