Abstract
Oral administration of sodium fluoride (NaF, 6 and 12 mg/kg body weight/day) to Swiss strain male albino mice for 30 days caused significant dose-dependant reduction in the content of acidic, basic, neutral, and total protein in cerebral hemisphere, cerebellum and medulla oblongata region of brain. After 30 days of NaF treatment, followed by withdrawal of treatment for 30 days, partial but significant amelioration occurred. Administration of 2% black tea extract alone for 30 days did not cause any significant effect. However, concurrent administration of NaF and black tea extract for 30 days caused significant amelioration in all parameters studied.
-
-
Black tea extract mitigation of NaF-induced lipid peroxidation in different regions of mice brains.
SUMMARY: As part of our investigation of fluoride toxicity effects in a group of 80 Swiss albino adult male mice, we examined the mitigating effects of black tea extract (BTE) on the F-induced enzymatic and non-enzymatic parameters of oxidative stress in the cerebral hemisphere (CH), cerebellum (CB), and medulla oblongata (MO) of the
-
Mitigation of sodium fluoride induced toxicity in mice brain by black tea infusion.
SUMMARY: In an extension of previous work on fluoride (F) toxicity in a group of 80 Swiss albino mice, the mitigating effects of polyphenols in black tea on the F-induced increase in glycogen, cholesterol, and total lipids in the cerebral hemisphere (CH), cerebellum (CB), and medulla oblongata (MO) regions of
-
Influence of chronic fluorosis on expression of phospho-Elk-1 in rat brains.
Objective: To investigate the expression and distribution of the downstream substrate of extracellular regulated protein kinase(ERK1/2) pathway, ternary complex factor phospho-Elk-1, in rat brains with chronic fluorosis, and reveal the mechanism of the impaired learning and memory ability caused by chronic fluorosis. Methods: Seventy-two SD rats, weighing 100 - 120 g,
-
Brick tea fluoride as a main source of adult fluorosis
An epidemiological survey was conducted in Naqu County, Tibet in September 2001 to investigate the manifestations of fluorosis in adults caused by the habitual consumption of brick tea. Profiles were obtained for the total daily fluoride intake, environmental fluoride levels and average urinary fluoride concentration, and a physical examination and a
-
Flavor augmentations affect fluoride bioavailability from brewed dark tea.
Highlights The bioavailability of fluoride in dark tea and NaF aqueous solution was evaluated. Milk significantly reduced the bioavailability of fluoride in dark tea. In rats, butter prolonged the absorption period of fluoride from dark tea. Fluorosis caused by consumption of dark tea is a major public health problem in the
Related Studies :
-
-
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Estimated "Threshold" Doses for Skeletal Fluorosis
For over 40 years health authorities stated that in order to develop crippling skeletal fluorosis, one would need to ingest between 20 and 80 mg of fluoride per day for at least 10 or 20 years. This belief, however, which played an instrumental role in shaping current fluoride policies, is now acknowledged by the National Academy of Sciences (NAS) and other US health authorities to be incorrect.
-
Skeletal Fluorosis in the U.S.
Although there has been a notable absence of systematic studies on skeletal fluorosis in the U.S., the available evidence indicates that the consumption of artificially fluoridated water is likely to cause skeletal fluorosis and other forms of bone disease in people with kidney disease and other vulnerable populations.
Related FAN Content :
-