Fluoride Action Network


Chronic fluoride intoxication results in pathophysiological complications pertaining to soft tissues, called non-skeletal fluorosis. This study examined whether fluoride-induced alterations in selected parameters that are indicative of mitochondrial dysfunction accompany the toxic effects of fluoride in discrete brain regions in vivo and also explored the possibility of treatment with Ginseng (GE) and Banaba (BLE) either alone or with their co-exposure which is capable of reversing parameters indicative of fluoride-induced impairments in mitochondrial function. Swiss mice, Mus musculus, were given 270 ppm fluoride (600 ppm NaF) in their drinking water for 30 days, while continuing the fluoride exposure, toxicated animals were given differential doses (50-250 mg/kg body wt) of phytoextracts through oral gavage for 2 weeks. Discrete brain regions separated from dissected animals to perform biochemical assessments. Disturbances in mitochondrial enzyme complexes (I-IV) and decrements in TCA enzymes (ICDH, SDH, and aconitase) were noted in discrete brain regions upon F exposure, suggesting mitochondrial dysfunction. In addition, a significant reduction in oxidative stress indices with increased MDA content as well as decrease in reduced glutathione content and increases in catalase and SOD enzyme activity suggests the involvement of severe oxidative stress affecting the mitochondrial function(s). Treatment with either GE or BLE reversed F-induced alterations in augmenting the suppressed complex enzymes followed by TCA enzymes and oxidative stress indices in a dose independent manner. However, the co-exposure of GE and BLE at a dose of 150 mg/kgbw appeared to restore mitochondrial functioning. These results provide in vivo evidence supporting the hypothesis that fluoride induces impairments in mitochondrial function, which can be reversed by treatment with GE and BLE as well their co-exposure at 150 mg/kgbw.