Abstract
Fluoride and lead are two common pollutants in the environment. Previous investigations have found that high fluoride exposure can increase the lead burden. In this experiment, in order to study on the molecular mechanisms of central neural system injury induced by the above two elements, differently expressed protein spots in hippocampus of male mice treated with 150 mg sodium fluoride/L and/or 300 mg lead acetate/L in their drinking water were detected by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). The behavior tests showed that 56 days of fluoride and lead administration significantly reduced the vertical activity and lowered the memory ability of mice. In addition, results of 2-DE and MS revealed that nine spots demonstrated above a twofold change in the same trend in all treatment groups, which were mainly related with (1) energy metabolism, (2) cell stress response/chaperones, (3) cytoskeleton development, (4) protein metabolism, and (5) cell surface signal transduction. The findings could provide potential biomarkers for lesion in nervous system induced by fluoride and lead exposure.
-
-
Decreased learning ability and low hippocampus glutamate in offspring rats exposed to fluoride and lead.
Fluoride (F) and lead (Pb) are two common environmental pollutants which are linked to the lowered intelligence, especially for children. Glutamate, a major excitatory neurotransmitter in the central nervous system, plays an important role in the process of learning and memory. However, the impact of F and Pb alone or
-
Pathologic changes and effect on the learning and memory ability in rats exposed to fluoride and aluminum
Background: The aim of this study is to establish a single and combined intoxication model of fluoride and aluminum so as to observe the impact of these chemicals on the learning and memory ability and the pathologic changes in brain of rats. Methods: Forty male Wistar rats were randomly assigned
-
MiR-132, miR-204 and BDNF-TrkB signaling pathway may be involved in spatial learning and memory.
Highlights Spatial learning and memory of offspring rats were impaired after exposure to fluorine combined with aluminium(FA). Hippocampal miR-132 and miR-204 were increased after FA exposure. Hippocampal BDNF-TrkB signaling pathway was down-regulated after FA exposure. There were antagonistic effects between F and Al, with Al reducing the toxicity of F. Fluorine
-
Reduction of CAMKII expression in the hippocampus of rats from ingestion of fluoride and/or lead.
Co-existing as environmental pollutants in certain areas of China where lead (Pb) is mined, fluoride (F) and Pb pose serious risks to the human central nervous system (CNS). Calcium/calmodulin-dependent protein kinase II (CaMKII) expression, which is involved in the process of learning and memory, has an important role in CNS
-
[Effects of high fluoride and low Iodine on learning-memory and TchE of brain in offspring rats].
Objective To study the effect of high level fluoride and low level iodine on learning-memory in offspring rats and possible mechanism. Methods Thirty-two Wistar rats were randomly divided into four groups each of eight (female:male=(3:1).) The rats were treated with high fluoride (100 and 150 mg NaF/L), low iodine (0.0855 mg/kg),
Related Studies :
-
-
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & IQ: 68 Studies
As of February 2021, a total of 76 studies have investigated the relationship between fluoride and human intelligence. Of these investigations, 68 studies have found that elevated fluoride exposure is associated with reduced IQ in humans, while over 60 animal studies have found that fluoride exposure impairs the learning and/or
Related FAN Content :
-