Abstract
Daily exposure to fluoride (F) depends mainly on the intake of this element with drinking water. When administered during gestation and lactation, F has been associated with cognitive deficits in the offspring. However, the mechanisms underlying the neurotoxicity of F remain obscure. In the current study, we investigated the effects of oral exposure to low levels of F during the gestational and lactation periods, on the memory of adult female rat offspring. We also considered a possible underlying neurotoxic mechanism. Our results showed that this exposure reduced step-down latency in the inhibitory avoidance task, and decreased both mRNA expression of the a7 nicotinic receptor (nAChR) and catalase activity in hippocampus. Our data indicates that low F concentrations administrated during gestation and lactation decrease the memory of 90-day-old female offspring. This suggests that the mechanism might be connected with an a7 nAChR deficit in the hippocampus, induced by oxidative stress.
-
-
Effects of chronic fluorosis on the brain.
Highlights Reviewing the mechanism of brain injury caused by chronic fluorosis is of great significance for protecting residents in fluorosis endemic areas. Abstract This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury,
-
Sirt3-mediated mitochondrial dysfunction is involved in fluoride-induced cognitive deficits.
Highlights Fluoride induces cognitive deficits in mice. Fluoride exposure results in neural/synaptic injury in the hippocampus of mice. Mitochondrial dysfunction contributes to neural/synaptic alternations. Inhibition of Sirt3 is involved in the fluoride-evoked mitochondrial abnormalities. Abstract Excessive fluoride is capable of inducing cognitive deficits, but the mechanisms remain elusive. This study aimed
-
The analog of Ginkgo biloba extract 761 is a protective factor of cognitive impairment induced by chronic fluorosis.
Ginkgo biloba extract EGb761 is widely used to treat patients with learning and memory impairment in Alzheimer's disease and Parkinson's disease in China. However, it is not yet clear whether the analog of EGb761 (EGb) has a protective effect on the learning and memory damage induced by chronic fluorosis. In
-
Evaluation of Metformin and Dehydrozingerone against fluorosis induced neurodevelopmental toxicity in preclinical models.
Background: Inorganic fluoride is widely used in dental practices to treat problems like dental caries and also to prevent bone related issues. It has been reported that exposure to excess amounts of fluoride either through drinking water or other sources impairs vital functions of the body and can
-
Attenuating effect of Vitamin E on the deficit of learning and memory of rats with chronic fluorosis: the mechanism may involve muscarinic acetylcholine receptors.
The protective role of vitamin E (Vit E) against neurotoxicity induced by fluorosis was investigated by using Sprague-Dawley (SD) rats fed with 50 ppm fluoride in drinking water for 10 months. Spatial learning and memory of rats were measured by the Morris water maze test; the expressions of M1 and
Related Studies :
-
-
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
Related FAN Content :
-